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Abstract

Program termination verification is a challenging re-
search subject of significant practical importance. While
there is already a rich body of literature on this subject, it
is still undeniably a difficult task to design a termination
checker for a realistic programming language that supports
general recursion. In this paper, we present an approach to
program termination verification that makes use of a form of
dependent types developed in Dependent ML (DML), demon-
strating a novel application of such dependent types to es-
tablishing a liveness property. We design a type system that
enables the programmer to supply metrics for verifying pro-
gram termination and prove that every well-typed program
in this type system is terminating. We also provide realistic
examples, which are all verified in a prototype implemen-
tation, to support the effectiveness of our approach to pro-
gram termination verification as well as its unobtrusiveness
to programming. The main contribution of the paper lies
in the design of an approach to program termination veri-
fication that smoothly combines types with metrics, yielding
a type system capable of guaranteeing program termination
that supports a general form of recursion (including mutual
recursion), higher-order functions, algebraic datatypes, and
polymorphism.

1 Introduction

Programming is notoriously error-prone. As a conse-
quence, a great number of approaches have been developed
to facilitate program error detection. In practice, the pro-
grammer often knows certain program properties that must
hold in acorrectimplementation; it is therefore an indication
of program errors if the actual implementation violates some
of these properties. For instance, various type systems have
been designed to detect program errors that cause violations
of the supported type disciplines.

It is common in practice that the programmer often knows
for some reasons that a particular program should termi-
nate if implemented correctly. This immediately implies
that a termination checker can be of great value for detect-
ing program errors that cause nonterminating program ex-
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ecution. However, termination checking in a realistic pro-
gramming language that supports general recursion is often
prohibitively expensive given that (a) program termination
in such a language is in general undecidable, (b) termination
checking often requires interactive theorem proving that can
be too involved for the programmer, (c) a minor change in a
program can readily demand a renewed effort in termination
checking, and (d) a large number of changes are likely to be
made in a program development cycle. In order to design a
termination checker for practical use, these issues must be
properly addressed.

There is already a rich literature on termination verifica-
tion. Most approaches to automated termination proofs for
either programs or term rewriting systems (TRSs) use var-
ious heuristics, some of which can be highly involved, to
synthesize well-founded orderings (e.g., various path order-
ings [3], polynomial interpretation [1], etc.). While these
approaches are mainly developed for first-order languages,
the work in higher-order settings can also be found (e.g.,
[7]). When a program, which should be terminating if im-
plemented correctly, cannot be proven terminating, it is of-
ten difficult for the programmer to determine whether this
is caused by a program error or by the limitation of the
heuristics involved. Therefore, such automated approaches
are likely to offer little help in detecting program errors that
cause nonterminating program execution. In addition, auto-
mated approaches often have difficulty handling realistic (not
necessarily large) programs.

The programmer can also prove program termination in
various (interactive) theorem proving systems such as NuPrl
[2], Coq [4], Isabelle [8] and PVS [9]. This is a viable prac-
tice and various successes have been reported. However, the
main problem with this practice is that the programmer may
often need to spend so much time on proving the termination
of a program compared with the time spent on simply im-
plementing the program. In addition, a renewed effort may
be required each time when some changes, which are likely
in a program development cycle, are made to the program.
Therefore, the programmer can often feel hesitant to adopt
(interactive) theorem proving for detecting program errors in
general programming.

We are primarily interested in finding a middle ground. In
particular, we are interested in forming a mechanism in a pro-
gramming language that allows the programmer to provide
keyinformation needed for establishing program termination



fun ack m n =
if m = 0 then n+1
else if n = 0 then ack (m-1) 1 else ack (m-1) (ack m (n-1))

withtype {i:nat,j:nat} <i,j> => int(i) -> int(j) -> [k:nat] int(k)

Figure 1. An implementation of Ackerman function

and then automatically verifies that the provided information
indeed suffices. An analogy would be like allowing the user
to provide induction hypotheses in inductive theorem prov-
ing and then proving theorems with the provided induction
hypotheses. Clearly, the challenging question is how such
key information for establishing program termination can be
formalized and then expressed. The main contribution of this
paper lies in our attempt to address the question by present-
ing a design that allows the programmer to provide through
dependent types such key information in a (relatively) simple
and clean way.

It is common in practice to prove the termination of recur-
sive functions with metrics. Roughly speaking, we attach a
metric in a well-founded ordering to a recursive function and
verify that the metric is always decreasing when a recursive
function call is made. In this paper, we present an approach
that uses the dependent types developed in DML [18, 14] to
carry metrics for proving program termination. We form a
type system in which metrics can be encoded into types and
prove that every well-typed program is terminating. It should
be emphasized that we are not here advocating the design
of a programming language in which only terminating pro-
grams can be written. Instead, we are interested in designing
a mechanism in a programming language, which, if the pro-
grammer chooses to use it, can facilitate program termination
verification. This is to be manifested in that the type system
we form can be smoothly embedded into the type system of
DML. We now illustrate the basic idea with a concrete exam-
ple before going into further details.

In Figure 1, an implementation of Ackerman function is
given. Thewithtype clause is a type annotation, which
states that for natural numbersi and j, this function takes
an argument of typeint(i) and another argument of type
int(j) and returns a natural number as a result. Note that
we have refined the usual integer typeint into infinitely
many singleton typesint(a) for a = 0, 1,−1, 2,−2, . . .
such thatint(a) is precisely the type for integer expres-
sions with value equal toa. We write {i:nat,j:nat }
for universally quantifying over index variablesi and j of
sort nat , that is, the sort for index expressions with values
being natural numbers. Also, we write[k:nat] int(k)
for Σk : nat.int(k), which represents the sum of all types
int(k) for k = 0, 1, 2, . . .. The novelty here is the pair〈i, j〉
in the type annotation, which indicates that this is the met-
ric to be used for termination checking. We now informally
explain how termination checking is performed in this case;
assume thati andj are two natural numbers andm andn
have typesint(i) andint(j), respectively, and attach the
metric 〈i, j〉 to ack m n; note that there are three recursive
function calls toack in the body ofack; we attach the met-

ric 〈i − 1, 1〉 to the firstack sincem − 1 and1 have types
int(i− 1) andint(1), respectively; similarly, we attach the
metric 〈i − 1, k〉 to the secondack, wherek is assumed to
be some natural number, and the metric〈i, j− 1〉 to the third
ack; it is obvious that〈i − 1, 1〉 < 〈i, j〉, 〈i − 1, k〉 < 〈i, j〉
and 〈i, j − 1〉 < 〈i, j〉 hold, where< is the usual lexico-
graphic ordering on pairs of natural numbers; we thus claim
that the functionack is terminating (by a theorem proven in
this paper). Note that although this is a simple example, its
termination cannot be proven with (lexicographical) struc-
tural ordering (as the semantic meaning of both addition+
and subtraction− is needed).1

More realistic examples are to be presented in Sec-
tion 5, involving dependent datatypes [15], mutual recursion,
higher-order functions and polymorphism. The reader may
read some of these examples before studying the sections on
technical development so as to get a feel as to what can actu-
ally be handled by our approach.

Combining metrics with the dependent types in DML
poses a number of theoretical and pragmatic questions. We
briefly outline our results and design choices.

The first question that arises is to decide what metrics we
should support. Clearly, the variety of metrics for establish-
ing program termination is endless in practice. In this pa-
per, we only consider metrics that are tuples of index expres-
sions of sortnat and use the usual lexicographic ordering
to compare metrics. The main reasons for this decision are
that (a) such metrics are commonly used in practice to estab-
lish termination proofs for a large variety of programs and
(b) constraints generated from comparing such metrics can
be readily handled by the constraint solveralreadybuilt for
type-checking DML programs. Note that the usual structural
ordering onfirst-order terms can be obtained by attaching to
the term the number of constructors in the term, which can be
readily accomplished by using the dependent datatype mech-
anism in DML. However, we are currently unable to capture
structural ordering on higher-order terms.

The second question is about establishing the soundness
of our approach, that is, proving every well-typed program
in the type system we design is terminating. Though the idea
mentioned in the example of Ackerman function seems intu-
itive, this task is far from being trivial because of the pres-
ence of higher-order functions. The reader may take a look
at the higher-order example in Section 5 to understand this.
We seek a method that can be readily adapted to handle var-
ious common programming features when they are added,

1There is an implementation of Ackerman function that involves only
primitive recursion and can thus be easily proven terminating, but the point
we drive here is that this particular implementation can be proven terminat-
ing with our approach.



including mutual recursion, datatypes, polymorphism, etc.
This naturally leads us to the reducibility method [12]. We
are to form a notion of reducibility for the dependent types
extended with metrics, in which the novelty lies in the treat-
ment of general recursion. This formation, which is novel to
our knowledge, constitutes the main technical contribution
of the paper.

The third question is about integrating our termination
checking mechanism with DML. In practice, it is common
to encounter a case where the termination of a functionf de-
pends on the termination of another functiong, which, unfor-
tunately, is not proven for various reasons, e.g., it is beyond
the reach of the adopted mechanism for termination check-
ing or the programmer is simply unwilling to spend the effort
proving it. Our approach is designed in a way that allows the
programmer to provide a metric in this case for verifying the
termination off conditional on the termination ofg, which
can still be useful for detecting program errors.

The presented work builds upon our previous work on the
use of dependent types in practical programming [18, 14].
While the work has its roots in DML, it is largely unclear,
a priori, how dependent types in DML can be used for es-
tablishing program termination. We thus believe that it is a
significant effort to actually design a type system that com-
bines types with metrics and then prove that the type sys-
tem guarantees program termination. This effort is further
strengthened with a prototype implementation and a variety
of verified examples.

The rest of the paper is organized as follows. We form
a languageMLΠ,Σ

0 in Section 2, which essentially extends
the simply typed call-by-valueλ-calculus with a form of de-
pendent types, developed in DML, and recursion. We then
extendMLΠ,Σ

0 to MLΠ,Σ
0,� in Section 3, combining metrics

with types, and prove that every program inMLΠ,Σ
0,� is termi-

nating. In Section 4, we enrichMLΠ,Σ
0,� with some significant

programming features such as datatypes, mutual recursion
and polymorphism. We present some examples in Section 5,
illustrating how our approach to program termination verifi-
cation is applied in practice. We then mention some related
work and conclude.

There is a full paper available on-line [16] in which the
reader can find details omitted here.

2 MLΠ,Σ
0

We start with a languageMLΠ,Σ
0 , which essentially ex-

tends the simply typed call-by-valueλ-calculus with a form
of dependent types and (general) recursion. The syntax for
MLΠ,Σ

0 is given in Figure 2.

2.1 Syntax

We fix an integer domain and restrict type index expres-
sions, namely, the expressions that can be used to index a
type, to this domain. This is a sorted domain and subset sorts
can be formed. For instance, we usenat for the subset sort

{a : int | a ≥ 0}. We useδ(~ı) for a base type indexed with
a sequence of index expressions~ı, which may be empty. For
instance,bool(0) andbool(1) are types for boolean values
false andtrue, respectively; for each integeri, int(i) is the
singleton type for integer expressions with value equal toi.

We useφ |= P for a satisfaction relation, which means
P holds underφ, that is, the formula(φ)P , defined below, is
satisfied in the domain of integers.

(·)Φ = Φ (φ, a : int)Φ = (φ)∀a : int.Φ
(φ, a : {a : γ | P})Φ = (φ, a : γ)(P ⊃ Φ)

(φ, P )Φ = (φ)(P ⊃ Φ)

For instance, the satisfaction relation

a : nat, a 6= 0 |= a− 1 ≥ 0

holds since the following formula is true in the integer do-
main.

∀a : int.a ≥ 0 ⊃ (a 6= 0 ⊃ a− 1 ≥ 0)

Note that the decidability of the satisfaction relation depends
on the constraint domain. For the integer constraint domain
we use here, the satisfaction relation is decidable (as we do
not accept nonlinear integer constraints).

We useΠa : γ.τ and Σa : γ.τ for the usual depen-
dent function and sum types, respectively. A type of form
Π~a : ~γ.τ is essentially equivalent toΠa1 : γ1 . . .Πan : γn.τ ,
where we use~a : ~γ for a1 : γ1, . . . , an : γn. 2 We also in-
troduceλ-variables andρ-variables inMLΠ,Σ

0 and usex and
f for them, respectively. A lambda-abstraction can only be
formed over aλ-variable while recursion (via fixed point op-
erator) must be formed over aρ-variable. Aλ-variable is a
value but aρ-variable is not.

We useλ for abstracting over index variables,lam for ab-
stracting over variables, andfun for forming recursive func-
tions. Note that the body after eitherλ or fun must be a
value. We use〈i | e〉 for packing an indexi with an expres-
sion e to form an expression of a dependent sum type, and
open for unpacking an expression of a dependent sum type.

2.2 Static Semantics

We writeφ ` τ : ∗ to mean thatτ is a legally formed type
underφ and omit the standard rules for such judgments.

index substitutions θI ::= [] | θI [a 7→ i]
substitutions θ ::= [] | θ[x 7→ e] | θ[f 7→ e]

A substitution is a finite mapping and[] represents an empty
mapping. We useθI for a substitution mapping index vari-
ables to index expressions anddom(θI) for the domain of
θI . Similar notations are used for substitutions on variables.
We write •[θI ] (•[θ]) for the result from applyingθI (θ) to
•, where• can be a type, an expression, etc. The standard

2In practice, we also have types of formΣ~a : ~γ.τ , which we omit here
for simplifying the presentation.



index constants cI ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·
index expressions i ::= a | cI | i1 + i2 | i1 − i2 | i1 ∗ i2 | i1/i2
index propositions P ::= i1 < i2 | i1 ≤ i2 | i1 > i2 | i1 ≥ i2 | i1 = i2 | i1 6= i2 | P1 ∧ P2 | P1 ∨ P2

index sorts γ ::= int | {a : γ | P}
index variable contexts φ ::= · | φ, a : γ | φ, P
index constraints Φ ::= P | P ⊃ Φ | ∀a : γ.Φ
types τ ::= δ(~ı) | Π~a : ~γ.τ | Σa : γ.τ
contexts Γ ::= · | Γ, x : τ | Γ, f : τ
constants c ::= true | false | 0 | 1 | −1 | 2 | −2 | · · ·
expressions e ::= c | x | f | if(e, e1, e2) | λ~a : ~γ.v | lam x : τ.e | e1(e2) |

fun f [~a : ~γ] : τ is v | e[~ı] | 〈i | e〉 | open e1 as 〈a | x〉 in e2

values v ::= c | x | λ~a : ~γ.v | lam x : τ.e | 〈i | v〉

Figure 2. The syntax for MLΠ,Σ
0

φ; Γ ` e : τ1 φ ` τ1 ≡ τ2
φ; Γ ` e : τ2

(type-eq)
Γ(x) = τ

φ; Γ ` x : τ
(type-λ-var)

Γ(f) = τ

φ; Γ ` f : τ
(type-ρ-var)

φ,~a : ~γ; Γ ` v : τ
φ; Γ ` λ~a : ~γ.v : Π~a : ~γ.τ

(type-ilam)
φ; Γ ` e : Π~a : ~γ.τ φ `~ı : ~γ

φ; Γ ` e[~ı] : τ [~a 7→~ı]
(type-iapp)

φ,~a : ~γ; Γ, f : Π~a : ~γ.τ ` v : τ
φ; Γ ` fun f [~a : ~γ] : τ is v : Π~a : ~γ.τ

(type-fun)

φ; Γ ` e : bool(i) φ, i = 1; Γ ` e1 : τ φ, i = 0; Γ ` e2 : τ
φ; Γ ` if(e, e1, e2) : τ

(type-if)

φ; Γ, x : τ1 ` e : τ2
φ; Γ ` lam x : τ1.e : τ1 → τ2

(type-lam)
φ; Γ ` e1 : τ1 → τ2 φ; Γ ` e2 : τ1

φ; Γ ` e1(e2) : τ2
(type-app)

φ; Γ ` e1 : Σa : γ.τ1 φ, a : γ; Γ, x : τ1 ` e2 : τ2
φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2

(type-open)
φ ` i : γ φ; Γ ` e : τ [a 7→ i]

φ; Γ ` 〈i | e〉 : Σa : γ.τ
(type-pack)

Figure 3. Typing Rules for MLΠ,Σ
0

definition is omitted. The following rules are for judgments
of form φ ` θI : φ′, which roughly means thatθI has “type”
φ′.

φ ` [] : ·
(sub-i-empty)

φ ` θI : φ′ φ ` i : γ[θI ]
φ ` θI [a 7→ i] : φ′, a : γ

(sub-i-var)

φ ` θI : φ′ φ |= P [θI ]
φ ` θI : φ′, P

(sub-i-prop)

We write dom(Γ) for the domain ofΓ, that is, the set of
variables declared inΓ. Given substitutionsθI and θ, we
say φ; Γ ` (θI ; θ) : (φ′; Γ′) holds if φ ` θI : φ′ and
dom(θ) = dom(Γ′) andφ; Γ[θI ] ` θ(x) : Γ′(x)[θI ] for
all x ∈ dom(Γ′).

We write φ |= τ ≡ τ ′ for the congruent extension of
φ |= i = j from index expressions to types, determined by
the following rules. It is the application of these rules that

generates constraints during type-checking.

φ |= i = j

φ |= δ(i) ≡ δ(j)
φ |= τ ′1 ≡ τ1 φ |= τ2 ≡ τ ′2
φ |= τ1 → τ2 ≡ τ ′1 → τ ′2

φ,~a : ~γ |= τ ≡ τ ′

φ |= Π~a : ~γ.τ ≡ Π~a : ~γ.τ ′
φ, a : γ |= τ ≡ τ ′

φ |= Σa : γ.τ ≡ Σa : γ.τ ′

We present the typing rules forMLΠ,Σ
0 in Figure 3. Some

of these rules have obvious side conditions, which are omit-
ted. For instance, in the rule(type-ilam), ~a cannot have free
occurrences inΓ. The following lemma plays a pivotal rôle
in proving the subject reduction theorem forMLΠ,Σ

0 , whose
standard proof is available in [14].

Lemma 2.1 Assumeφ, φ′; Γ,Γ′ ` e : τ is derivable and
φ; Γ ` (θI ; θ) : (φ′; Γ′) holds. Then we can deriveφ; Γ[θI ] `
e[θI ][θ] : τ [θI ].



2.3 Dynamic Semantics

We present the dynamic semantics ofMLΠ,Σ
0 through the

use of evaluation contexts defined below. Certainly, there are
other possibilities for this purpose, which we do not explore
here.3

evaluation contextsE ::=
[] | if(E, e1, e2) | E[~ı] | E(e) | v(E) |
〈i | E〉 | open E as 〈a | x〉 in e

We write E[e] for the expression resulting from replacing
the hole[] in E with e. Note that this replacement cannever
result in capturing free variables.

Definition 2.2 A redex is defined below.

• if(c, e1, e2) are redexes forc = true, false, which re-
duce toe1 ande2, respectively.

• (lam x : τ.e)(v) is a redex, which reduces toe[x 7→ v].

• Let e be fun f [~a : ~γ] : τ is v Thene is a redex, which
reduces toλ~a : ~γ.v[f 7→ e].

• (λ~a : ~γ.v)[~ı] is a redex, which reduces tov[~a 7→~ı].

• open 〈i | v〉 as 〈a | x〉 in e is a redex, which reduces
to e[a 7→ i][x 7→ v].

We user for a redex and writer ↪→ e if r reduces toe. If
e1 = E[r], e2 = E[e] andr ↪→ e, we writee1 ↪→ e2 and say
e1 reduces toe2 in one step.

Let ↪→∗ be the reflexive and transitive closure of↪→. We say
e1 reduces toe2 (in many steps) ife1 ↪→∗ e2. We omit the
standard proof for the following subject reduction theorem,
which uses Lemma 2.1.

Theorem 2.3 (Subject Reduction) Assume·; · ` e : τ is
derivable inMLΠ,Σ

0 . If e ↪→∗ e′, then·; · ` e′ : τ is also
derivable inMLΠ,Σ

0 .

2.4 Erasure

We can simply transformMLΠ,Σ
0 into a languageML0

by erasing all syntax related to type index expressions in
MLΠ,Σ

0 . Then ML0 basically extends simply typedλ-
calculus with recursion. Let|e| be the erasure of expression
e. We havee1 reducing toe2 in MLΠ,Σ

0 implies |e1| reduc-
ing to |e2| in ML0. Therefore, ife is terminating inMLΠ,Σ

0
then|e| is terminating inML0. This is a crucial point since
the evaluation of a program inMLΠ,Σ

0 is (most likely) done
through the evaluation of its erasure inML0. Please find
more details on this issue in [18, 14].

3For instance, it is suggested that one present the dynamic semantics in
the style of natural semantics and then later form the notion of reducibility
for evaluation rules.

3 MLΠ,Σ
0,�

We combine metrics with the dependent types inMLΠ,Σ
0 ,

forming a languageMLΠ,Σ
0,�. We then prove that every well-

typed program inMLΠ,Σ
0,� is terminating, which is the main

technical contribution of the paper.

3.1 Metrics

We use≤ for the usual lexicographic ordering on tuples
of natural numbers and< for the strict part of≤. Given
two tuples of natural numbers〈i1, . . . , in〉 and〈i′1, . . . , i′n′〉,
〈i1, . . . , in〉 < 〈i′1, . . . , i′n′〉 holds if n = n′ and for some
0 ≤ k ≤ n, ij = i′j for j = 1, . . . , k − 1 andik < i′k. Evi-
dently,< is a well-founded. We stress that (in theory) there
is no difficulty supporting various other well-founded order-
ings on natural numbers such as the usual multiset ordering.
We fix an ordering solely for easing the presentation.

Definition 3.1 (Metric) Let µ = 〈i1, . . . , in〉 be a tuple of
index expressions andφ be an index variable context. We
sayµ is a metric underφ if φ ` ij : nat are derivable for
j = 1, . . . , n. We writeφ ` µ : metric to meanµ is a metric
underφ.

A decorated type inMLΠ,Σ
0,� is of formΠ~a : ~γ.µ⇒ τ , and

the following rule is for forming such types.

φ,~a : ~γ ` τ : ∗ φ,~a : ~γ ` µ : metric
φ ` Π~a : ~γ.µ⇒ τ : ∗

The syntax ofMLΠ,Σ
0,� is the same as that ofMLΠ,Σ

0 except

that a contextΓ in MLΠ,Σ
0,� maps everyρ-variablef in its do-

main to a decorated type and a recursive function inMLΠ,Σ
0,�

is of form fun f [~a : ~γ] : µ ⇒ τ is v. The process of
translating a source program into an expression inMLΠ,Σ

0,� is
what we callelaboration, which is thoroughly explained in
[18, 14]. Our approach to program termination verification
is to be applied to elaborated programs.

3.2 Dynamic and Static Semantics

The dynamic semantics ofMLΠ,Σ
0,� is formed in precisely

the same manner as that ofMLΠ,Σ
0 and we thus omit all the

details.
The difference betweenMLΠ,Σ

0,� andMLΠ,Σ
0 lies in static

semantics. There are two kinds of typing judgments in
MLΠ,Σ

0 , which are of formsφ; Γ ` e : τ andφ; Γ ` e : τ �f

µ0. We call the latter a metric typing judgment, for which
we give some explanation. Supposeφ; Γ ` e : τ �f µ0

and Γ(f) = Π~a : ~γ.µ ⇒ τ ; roughly speaking, for each
free occurrence off in e, f is followed by a sequence of
index expressions[~ı] such thatµ[~a 7→ ~ı], which we call
the label of this occurrence off , is less thanµ0 underφ.
Now suppose we have a well-typed closed recursive function



e = fun f [~a : ~γ] : µ⇒ τ is v in MLΠ,Σ
0,� and~ı are of sorts~γ;

thenf [~ı][f 7→ e] = e[~ı] ↪→∗ v[~a 7→ ~ı][f 7→ e] holds; by the
rule(type-fun), we know that all labels off in v are less than
µ[~a 7→~ı], which is the label off in f [~ı]; since labels cannot
decrease forever, this yields some basic intuition on why all
recursive functions inMLΠ,Σ

0,� are terminating. However, this
intuitive argument is difficult to be formalized directly in the
presence of high-order functions.

The typing rules inMLΠ,Σ
0,� for a judgment of formφ; Γ `

e : τ are essentially the same as those inMLΠ,Σ
0 except the

following ones.

Γ(f) = Π~a : ~γ.µ⇒ τ

φ; Γ ` f : Π~a : ~γ.τ
(type-ρ-var)

φ,~a : ~γ; Γ, f : Π~a : ~γ.µ⇒ τ ` v : τ �f µ

φ; Γ ` fun f [~a : ~γ] : µ⇒ τ is v : Π~a : ~γ.τ
(type-fun)

We present the rules for deriving metric typing judgments in
Figure 4. Givenµ = 〈i1, . . . , in〉 andµ′ = 〈i′1, . . . , i′n〉,
φ |= µ < µ′ means that for some1 ≤ k < n, φ, i1 =
i′1, . . . , ij−1 = i′j−1 |= ij ≤ i′j are satisfied for all1 ≤ j < k
andφ, i1 = i′1, . . . , ik−1 = i′k−1 |= ik < i′k is also satisfied.

Lemma 3.2 We have the following.

1. Assumeφ, φ′; Γ,Γ′ ` e : τ is derivable andφ; Γ `
(θI ; θ) : (φ′; Γ′) holds. Then we can deriveφ; Γ[θI ] `
e[θI ][θ] : τ [θI ].

2. Assumeφ, φ′; Γ,Γ′ ` e : τ �f µ is derivable and
φ; Γ ` (θI ; θ) : (φ′; Γ′) holds andf ∈ dom(Γ). Then
we can deriveφ; Γ[θI ] ` e[θI ][θ] : τ [θI ]�f µ[θI ].

Proof (1) and (2) are proven simultaneously by struc-
tural induction on derivations ofφ, φ′; Γ,Γ′ ` e : τ and
φ, φ′; Γ,Γ′ ` e : τ �f µ, respectively.

Theorem 3.3 (Subject Reduction) Assume·; · ` e : τ is
derivable inMLΠ,Σ

0,�. If e ↪→∗ e′, then·; · ` e′ : τ is also

derivable inMLΠ,Σ
0,�.

Obviously, we have the following.

Proposition 3.4 Assume thatD is a derivationφ; Γ ` e :
τ �f µ0. Then then there is a derivation ofφ; Γ ` e : τ
with the same height4 asD.

3.3 Reducibility

We define the notion of reducibility for well-typed closed
expressions.

Definition 3.5 (Reducibility) Suppose thate is a closed ex-
pression of typeτ ande ↪→∗ v holds for some valuev. The
reducibility ofe is defined by induction on the complexity of
τ .

4For a minor technicality reason, we count neither of the rules
(type-ρ-var) and(�-ρ-var) when calculating the height of a derivation.

1. τ is a base type. Thene is reducible.

2. τ = τ1 → τ2. Thene is reducible ife(v1) are reducible
for all reducible valuesv1 of typeτ .

3. τ = Π~a : ~γ.τ1. Thene is reducible ife[~ı] are reducible
for all~ı : ~γ.

4. τ = Σa : γ.τ1. Thene is reducible ifv = 〈i | v1〉 for
somei andv1 such thatv1 is a reducible value of type
τ1[a 7→ i].

Note that reducibility isonly defined for closed expressions
that reduce to values.

Proposition 3.6 Assume thate is a closed expression of type
τ ande ↪→ e′ holds. Thene is reducible if and only ife′ is
reducible.

Proof By induction on the complexity ofτ .

The following is a key notion for handling recursion,
which, though natural, requires some technical insights.

Definition 3.7 (µ-Reducibility). Lete be a well-typed closed
recursive functionfun f [~a : ~γ] : µ ⇒ τ is v andµ0 be a
closed metric.e is µ0-reducible ife[~ı] are reducible for all
~ı : ~γ satisfyingµ[~a 7→~ı] < µ0.

Definition 3.8 Letθ be a substitution that maps variables to
expressions; for everyx ∈ dom(θ), θ is x-reducible ifθ(x)
is reducible; for everyf ∈ dom(θ), θ is (f, µf )-reducible if
θ(f) is µf -reducible.

In some sense, the following lemma verifies whether the
notion of reducibility is formed correctly, where the difficulty
probably lies in its formulation rather than in its proof.

Lemma 3.9 (Main Lemma) Assume thatφ; Γ ` e : τ and
· ` (θI ; θ) : (φ; Γ) are derivable. Also assume thatθ
is x-reducible for everyx ∈ dom(Γ) and for everyf ∈
dom(Γ), ·; Γ[θI ] ` e[θI ] : τ [θI ] �f µf is derivable andθ
is (f, µf )-reducible. Thene[θI ][θ] is reducible.

Proof Let D be a derivation ofφ; Γ ` e : τ and we pro-
ceed by induction on the height ofD. We present the most
interesting case below. All other cases can be found in [16].
Assume that the following rule(type-fun) is last applied in
D,

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 �f1 µ1

φ; Γ ` fun f1[ ~a1 : ~γ1] : µ1 ⇒ τ1 is v1 : Π~a1 : ~γ1.τ1

where we havee = fun f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1

and τ = Π~a1 : ~γ1.τ1. Suppose thate∗ = e[θI ][θ] is
not reducible. Then by definition there exist~ı0 : ~γ∗1 such
that e∗[~ı0] is not reducible bute∗[~ı] are reducible for all
~ı : ~γ∗1 satisfying µ∗1[~a1 7→ ~ı] < µ∗1[~a1 7→ ~ı0], where
~γ∗1 = ~γ1[θI ] andµ∗1 = µ1[θI ]. In other words,e∗ is µf1-
reducible forµf1 = µ∗1[~a1 7→ ~ı0]. Note that we can derive
·; Γ[θI ], f1 : Π~a1 : ~γ∗1 .τ1[θI ] ` v1[θI [~a1 7→~ı0]] : τ1[θI [~a1 7→



Γ(x) = τ

φ; Γ ` x : τ �f µ0
(�-λ-var)

Γ(f1) = τ f1 6= f

φ; Γ ` f1 : τ �f µ0
(�-ρ-var)

φ; Γ ` e : bool(i)�f µ0 φ, i = 1; Γ ` e1 : τ �f µ0 φ, i = 0; Γ ` e2 : τ �f µ0

φ; Γ ` if(e, e1, e2) : τ �f µ0
(�-if)

φ,~a : ~γ; Γ ` v : τ �f µ0

φ; Γ ` λ~a : ~γ.v : Π~a : ~γ.τ �f µ0
(�-ilam)

φ; Γ ` e : Π~a : ~γ.τ �f µ0 φ `~ı : ~γ
φ; Γ ` e[~ı] : τ [~a 7→~ı]�f µ0

(�-iapp)

φ; Γ, x : τ1 ` e : τ2 �f µ0

φ; Γ ` lam x : τ1.e : τ1 → τ2 �f µ0
(�-lam)

φ; Γ ` e1 : τ1 → τ2 �f µ0 φ; Γ ` e2 : τ1 �f µ0

φ; Γ ` e1(e2) : τ2 �f µ0
(�-app)

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : µ1 ⇒ ~γ1.τ1 ` v1 : τ1 �f1 µ1

φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.τ1 ` e1 : τ1 �f µ0

φ; Γ ` fun f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 : Π~a1 : ~γ1.τ1 �f µ0
(�-fun)

φ `~ı : ~γ φ |= µ[~a 7→~ı] < µ0 Γ(f) = Π~a : ~γ.µ⇒ τ

φ; Γ ` f [~ı] : τ [~a 7→~ı]�f µ0
(�-lab)

φ ` i : γ φ; Γ ` e : τ [a 7→ i]�f µ0

φ; Γ ` 〈i | e〉 : Σa : γ.τ �f µ0
(�-pack)

φ; Γ ` e1 : Σa : γ.τ1 �f µ0 φ, a : γ; Γ, x : τ1 ` e2 : τ2 �f µ0

φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2 �f µ0
(�-open)

Figure 4. Metric Typing Rules for MLΠ,Σ
0,�

~ı0]] �f µf1 . By Proposition 3.4, there is a derivationD1 of
φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1.µ1 ⇒ τ1 ` v1 : τ1 such that the
height ofD1 is less than that ofD. By induction hypothesis,
we have thatv∗1 = v1[θI [~a1 7→~ı0]][θ[f1 7→ e∗]] is reducible.
Note thate∗[~ı0] ↪→∗ v∗1 and thuse∗[~ı0] is reducible, contra-
dicting the definition of~ı0. Therefore,e∗ is reducible.

The following is the main result of the paper.

Corollary 3.10 If ·; · ` e : τ is derivable inMLΠ,Σ
0,�, thene

in MLΠ,Σ
0,� is reducible and thus reduces to a value.

Proof The corollary follows from Lemma 3.9.

4 Extensions

We can extendMLΠ,Σ
0,� with some significant program-

ming features such as mutual recursion, datatypes and poly-
morphism, defining the notion of reducibility for each ex-
tension and thus making it clear that Lemma 3.9 still holds
after the extension. We present in this section the treatment
of mutual recursion and currying, leaving the details in [16].

4.1 Mutual Recursion

The treatment of mutual recursion is slightly different
from the standard one. The syntax and typing rules for
handling mutual recursion are given in Figure 5. We use

(τ1, . . . , τn) for the type of an expression representingnmu-
tually recursive functions of typesτ1, . . . , τn, respectively,
which should not be confused with the product of types
τ1, . . . , τn. Also, then in e.n must be a positive (constant)
integer. Letv be the following expression.

funs f1[~a1 : ~γ1] : τ1 is v1 and . . .and fn[~an : ~γn] : τn is vn

Then for every1 ≤ k ≤ n, v.k is a redex, which reduces to
λ~ak : ~γk.vk[f1 7→ v.1, . . . , fn 7→ v.n]. Let ~f = f1, . . . , fn
and we form a metric typing judgmentφ; Γ ` e �~f µ0 for
verifying that all labels off1, . . . , fn in e are less thanµ0 un-
derφ. The rules for deriving such a judgment are essentially
the same as those in Figure 4 except(�-lab), which is given
below.

f in ~f Γ(f) = Π~a : ~γ.µ⇒ τ φ |= µ[~a 7→~ı] < µ0

φ; Γ ` f [~ı] : τ [~a 7→~ı]�~f µ0

The rule(�-funs) for handling mutual recursion is straight-
forward and thus omitted.

Definition 4.1 (Reducibility) Lete be a closed expression of
type(τ1, . . . , τn) ande reduces tov. e is reducible ife.k are
reducible fork = 1, . . . , n.

4.2 Currying

A decorated type must so far be of formΠ~a : ~γ.µ ⇒ τ
and this restriction has a rather unpleasant consequence. For



types τ ::= · · · | (Π~a1 : ~γ1.τ1, . . . ,Π~an : ~γn.τn)
expressions e ::= · · · | e.n | funs f1[~a1 : ~γ1] : τ1 is v1 and . . .and fn[~an : ~γn] : τn is vn
values v ::= · · · | funs f1[~a1 : ~γ1] : τ1 is v1 and . . .and fn[~an : ~γn] : τn is vn

~f = f1, . . . , fn τ = (Π~a1 : ~γ1.τ1, . . . ,Π~an : ~γn.τn)
φ,~a1 : ~γ1; Γ, f1 : Π~a1 : ~γ1 : µ1 ⇒ τ1, . . . , fn : Π~an : ~γn : µn ⇒ τn ` v1 : τ1 �~f µ1

· · · · · ·
φ,~an : ~γn; Γ, f1 : Π~a1 : ~γ1 : µ1 ⇒ τ1, . . . , fn : Π~an : ~γn : µn ⇒ τn ` vn : τn �~f µn

φ; Γ ` funs f1[~a1 : ~γ1] : µ1 ⇒ τ1 is v1 and . . .and fn[~an : ~γn] : µn ⇒ τn is vn : τ
(type-funs)

φ; Γ ` e : (τ1, . . . , τn) 1 ≤ k ≤ n
φ; Γ ` e.k : τk

(type-choose)

Figure 5. The Syntax and Typing Rules for Mutual Recursion

instance, we may want to assign the following typeτ to the
implementation of Ackerman function in Figure 1:

{i:nat } int(i) -> {j:nat } int(j) -> int ,

which is formally written as

Πa1 : nat .int(a1)→ Πa2 : nat .int(a2)→ Σa : nat .int(a).

If we decorateτ with a metricµ, thenµ can only involve
the index variablea1, making it impossible to verify that the
implementation is terminating.

We generalize the form of decorated types to the follow-
ing so as to address the problem.

Π~a1 : ~γ1.τ1 → · · · → Π~an : ~γn.τn → Π~a : ~γ.µ⇒ τ.

Also, we introduce the following form of expressione for
representing a recursive function.

fun f [~a1 : ~γ1](x1 : τ1) · · · [~an : ~γn](xn : τn)[~a : ~γ] : τ is e0

We require thate0 be a value ifn = 0. In the following, we
only deal with the casen = 1. Forn > 1, the treatment is
similar. Fore = fun f [~a1 : ~γ1](x1 : τ1)[~a : ~γ] : τ is e0, we
havee ↪→ λ~a1 : ~γ1.lam x1 : τ1.λ~a : ~γ.e0 and the following
typing rule

φ,~a1 : ~γ1,~a : ~γ; Γ, f : τ0, x1 : τ1 ` e : τ �f µ

φ; Γ ` fun f [~a1 : ~γ1](x1 : τ1)[~a : ~γ] : µ⇒ τ is e : τ0
whereτ0 = Π~a1 : ~γ1.τ1 → Π~a : ~γ.τ , and the following
metric typing rule

φ |=~ı1 : ~γ1 φ |=~ı : ~γ[~a1 7→~ı1]
φ |= µ[~ı1 7→ ~a1][~a 7→~ı] < µ0

φ; Γ ` e1 : τ1[~a1 7→~ı1]�f µ0

Γ(f) = Π~a1 : ~γ1.τ1 → Π~a : ~γ.µ⇒ τ

φ; Γ ` f [~ı1](e1)[~ı] : τ [~a1 7→~ı1][~a 7→~ı]�f µ0

Definition 4.2 (µ-reducibility) Let e be a closed recursive
functionfun f [ ~a1 : ~γ1](x1 : τ1)[~a : ~γ] : τ is e andµ0 be
a closed metric.e is µ0-reducible ife[~ı1](v)[~ı] are reducible
for all reducible valuesv : τ1[~a1 7→ ~ı1] and~ı1 : ~γ1 and
~ı : ~γ[~a1 7→~ı1] satisfyingµ[~a1 7→~ı1][~a 7→~ı] < µ0.

5 Practice

We have implemented a type-checker forMLΠ,Σ
0,� in a pro-

totype implementation of DML and experimented with vari-
ous examples, some of which are presented below. We also
address the practicality issue at the end of this section.

5.1 Examples

We demonstrate how various programming features are
handled in practice by our approach to program termination
verification.

Primitive Recursion The following is an implementation
of the primitive recursion operatorR in Gödel’sT , which is
clearly typable inMLΠ,Σ

0,�. Note thatZ andS are assigned
the typesNat(0) and Πn : nat.Nat(n) → Nat(n + 1),
respectively.

datatype Nat with nat =
Z(0) | {n:nat} S(n+1) of Nat(n)

fun(’a) R Z u v =
u | R (S n) u v = v n (R n u v)

withtype
{n:nat} <n> =>
Nat(n) -> ’a -> (Nat -> ’a -> ’a) -> ’a

(* Nat is for [n:nat] Nat(n) in a type *)

By Corollary 3.10, it is clear that every term inT is termi-
nating (or weakly normalizing). This is the only example in
this paper that can be proven terminating with a structural
ordering. The point we make is that though it seems
“evident” that the use ofR cannot cause non-termination, it
is not trivial at all to prove every term inT is terminating.
Notice that such a proof cannot be obtained in Peano
arithmetic. The notion of reducibility is precisely invented
for overcoming the difficulty [12]. Actually, every term in
T is strongly normalizing, but this obviously is untrue in



MLΠ,Σ
0,�.

Nested Recursive Function Call The program in Figure 6
involving a nested recursive function call implements Mc-
Carthy’s “91” function. Thewithtype clause indicates
that for every integerx, f91(x) returns integer91 if x ≤ 100
andx − 10 if x ≥ 101. We informally explain why the
metric in the type annotation suffices to establish the termi-
nation off91; for the inner call tof91, we need to prove that
φ |= max(0, 101− (i+ 11)) < max(0, 101− i) is satisfied
for φ = i : int , i ≤ 100, which is obvious; for the outer
call tof91, we need to verify thatφ1 |= max(0, 101− j) <
max(0, 101− i), whereφ1 is φ, j : int , P andP is

(i+ 11 ≤ 100∧ j = 91)∨ (i+ 11 ≥ 101∧ j = i+ 11− 10)

If i + 11 ≤ 100, thenj = 91 andmax(0, 101 − j) = 10 <
12 ≤ 101− i; if i+ 11 ≥ 101, thenj = i+ 11− 10 = i+ 1
andmax(0, 101 − j) < 101 − i (sincei ≤ 100 is assumed
in φ). Clearly, this example can not be handled with a
structural ordering.

Mutual Recursion The program in Figure 7 implements
quicksort on a list, where the functionsqs andpar are de-
fined mutually recursively. We informally explain why this
program is typable inMLΠ,Σ

0,� and thusqs is a terminating
function by Corollary 3.10.

For the call topar in the body ofqs, the label is(0 +
0 + a, a + 1), wherea is the length ofxs′. So we need to
verify thatφ |= (0 + 0 + a, a + 1) < (n, 0) is satisfied for
φ = n : nat , a : nat , a+ 1 = n, which is obvious.

For the two calls toqs in the body ofpar, we need to
verify thatφ |= (p, 0) < (p+ q+ r, r+ 1) andφ |= (q, 0) <
(p+q+r, r+1) for φ = p : nat , q : nat , r : nat , r = 0, both
of which hold sinceφ |= p ≤ p+ q andφ |= q ≤ p+ q and
φ |= 0 < 1. This also indicates why we needr + 1 instead
of r in the metric forpar.

For the two calls topar in the body ofpar, we need
to verify thatφ |= ((p + 1) + q + a, a) < (p + q + r, r)
and φ |= (p + (q + 1) + a, a) < (p + q + r, r) for
φ = p : nat , q : nat , r : nat , a : nat , r = a + 1, both of
which hold sinceφ |= (p + 1) + q + a = p + q + r and
φ |= p + (q + 1) + a = p + q + r andφ |= a < r. Clearly,
this example can not be handled with a structural ordering.

Higher-order Function The program in Figure 8 imple-
ments a functionaccept that takes a patternp and a string
s and checks whethers matchesp, where the meaning of a
pattern is given in the comments.

The auxiliary functionacc is implemented in continua-
tion passing style, which takes a patternp, a list of char-
acterscs and a continuationk and matches a prefix ofcs
againstp and callk on the rest of characters. Note thatk
is given a type that allowsk to be applied only to a char-
acter list not longer thancs. The metric used for proving
the termination ofacc is 〈n, i〉, wheren is the size ofp,
that is the number constructors inp (excludingEmpty) and
i is the length ofcs. Notice the callacc p cs′ k in the

last pattern matching clause; the label attached to this call is
〈n, i′〉, wherei′ is the length ofcs′; we havei′ ≤ i since the
continuation has the typeΠa′ : γ.(char)list(a′) → bool,
where γ is {a : nat | a ≤ i}; we havei 6= i′ since
length(cs′) = length(cs) must be false when this call hap-
pens; therefore we havei′ < i 5 and then〈n, i′〉 < 〈n, i〉. It
is straightforward to see that the labels attached to other calls
to acc are less than〈n, i〉. By Corollary 3.10,acc is termi-
nating, which implies thataccept is terminating (assuming
explode is terminating). In every aspect, this is a non-trivial
example even for interactive theorem proving systems.

Notice that the testlength(cs′) = length(cs) in the body
of acc can be time-consuming. This can be resolved by using
a continuation that accepts as its arguments both a character
list and its length. In [5], there is an elegant implementa-
tion of accept that does some processing on the pattern to be
matched and then eliminates the test.
Run-time Check There are also realistic cases where termi-
nation depends on a program invariant that cannot (or is diffi-
cult to) be captured in the type system of DML. For instance,
the following example is adopted from an implementation of
bit reversing, which is a part of an implementation of fast
Fourier transform (FFT).

fun loop (j, k) =
if (k<j) then loop (j-k, k/2) else j+k

withtype
{a:nat,b:nat} int(a) * int(b) -> int

Obviously,loop(1, 0) is not terminating. However, we may
know for some reason that the second argument ofloop can
never be0 during execution. This leads to the following im-
plementation, in which we need to check thatk > 1 holds
before callingloop(j− k, k/2) so as to guarantee thatk/2 is
a positive integer.

fun loop (j, k) =
if (k < j) then

if (k > 1) then loop (j - k, k / 2)
else raise Impossible

else j + k
withtype {a:nat,b:pos} <max(0, a-b)> =>

int(a) * int(b) -> int

It can now be readily verified thatloop is a terminating func-
tion. This example indicates that we can insert run-time
checks to verify program termination, sometimes, approxi-
mating a liveness property with a safety property.

5.2 Practicality

There are two separate issues concerning the practicality
of our approach to program termination verification, which
are (a) the practicality of the termination verification pro-
cess and (b) the applicability of the approach to realistic pro-
grams.

5Note thatlength(cs′) and length(cs) have the typesint(i′) and
int(i), respectively, and thuslength(cs′) = length(cs) has the type
bool(i′ = i), wherei′ = i equals1 or 0 depending on whetheri′ equalsi.
Thus,i′ < i can be inferredin the type system.



fun f91 (x) = if (x <= 100) then f91 (f91 (x + 11)) else x - 10
withtype

{i:int} <max(0, 101-i)> =>
int(i) -> [j:int | (i<=100 /\ j=91) \/ (i>=101 /\ j=i-10)] int(j)

Figure 6. An implementation of McCarthy’s “91” function

fun(’a) qs cmp xs =
case xs of [] => [] | x :: xs’ => par cmp (x, [], [], xs’)

withtype (’a * ’a -> bool) -> {n:nat} <n,0> => ’a list(n) -> ’a list(n)

and(’a) par cmp (x, l, r, xs) =
case xs of

[] => qs cmp l @ (x :: qs cmp r)
| x’ :: xs’ => if cmp(x’, x) then par cmp (x, x’ :: l, r, xs’)

else par cmp (x, l, x’ :: r, xs’)
withtype (’a * ’a -> bool) -> {p:nat,q:nat,r:nat} <p+q+r,r+1> =>

’a * ’a list(p) * ’a list(q) * ’a list(r) -> ’a list(p+q+r+1)

Figure 7. An implementation of quicksort on a list

It is easy to observe that the complexity of type-checking
in MLΠ,Σ

0,� is basically the same as inMLΠ,Σ
0 since the only

added work is to verify that metrics (provided by the pro-
grammer) are decreasing, which requires solving some extra
constraints. The number of extra constraints generated from
type-checking a function is proportional to the number of re-
cursive calls in the body of the function and therefore is likely
small. Based on our experience with DML, we thus feel that
type-checking inMLΠ,Σ

0,� is suitable for practical use.
As for the applicability of our approach to realistic pro-

grams, we use the type system of the programming language
C as an example to illustrate a design decision. Obviously,
the type system of C is unsound because of (unsafe) type
casts, which are often needed in C for typing programs that
would otherwise not be possible. In spite of this practice, the
type system of C is still of great help for capturing program
errors. Clearly, a similar design is to allow the programmer
to assert the termination of a function in DML if it cannot be
verified, which we may calltermination cast. Combining ter-
mination verification, run-time checks and termination cast,
we feel that our approach is promising to be put into practice.

6 Related Work

The amount of research work related to program termina-
tion is simply vast. In this section, we mainly mention some
related work with which our work shares some similarity ei-
ther in design or in technique.

Most approaches to automated termination proofs for ei-
ther programs or term rewriting systems (TRSs) use various
heuristics to synthesize well-founded orderings. Such ap-
proaches, however, often have difficulty reporting compre-
hensible information when a program cannot be proven ter-

minating. Following [13], there is also a large amount of
work on proving termination of logic programs. In [11], it is
reported that the Mercury compiler can perform automated
termination checking on realistic logic programs.

However, we address a different question here. We are
interested in checking whether a given metric suffices to es-
tablish the termination of a program and not in synthesiz-
ing such a metric. This design is essentially the same as the
one adopted in [10], where it checks whether a given struc-
tural ordering (possibly on high-order terms) is decreasing in
an inductive proof or a logic program. Clearly, approaches
based on checking complements those based on synthesis.

Our approach also relates to the semantic labelling ap-
proach [19] designed to prove termination for term rewrit-
ing systems (TRSs). The essential idea is to differentiate
function calls with labels and show that labels are always
decreasing when a function call unfolds. The semantic la-
belling approach requires constructing a model for a TRS to
verify whether labelling is done correctly while our approach
does this by type-checking.

The notion of sized types is introduced in [6] for prov-
ing the correctness of reactive systems. There, the type sys-
tem is capable of guaranteeing the termination of well-typed
programs. The language presented in [6], which is designed
for embedded functional programming, contains a significant
restriction as it only supports (a minor variant) of primitive
recursion, which can cause inconvenience in programming.
For instance, it seems difficult to implement quicksort by us-
ing only primitive recursion. From our experience, general
recursion is really a major programming feature that greatly
complicates program termination verification. Also, the no-
tion of existential dependent types, which we deem indis-
pensable in practical programming, does not exist in [6].

When compared to various (interactive) theorem proving



datatype pattern with nat =
Empty(0) (* empty string matches Empty *)

| Char(1) of char (* "c" matches Char (c) *)
| {i:nat,j:nat} Plus(i+j+1) of pattern(i) * pattern(j)

(* cs matches Plus(p1, p2) if cs matches either p1 or p2 *)
| {i:nat,j:nat} Times(i+j+1) of pattern(i) * pattern(j)

(* cs matches Times(p1, p2) if a prefix of cs matches p1 and
the rest matches p2 *)

| {i:nat} Star(i+1) of pattern(i)
(* cs matches Star(p) if cs matches some, possibly 0, copies of p *)

(* ’length’ computes the length of a list *)
fun(’a)

length (xs) = let
fun len ([], n) = n

| len (x :: xs, n) = len (xs, n+1)
withtype

{i:nat,j:nat} <i> => ’a list(i) * int(j) -> int(i+j)
in

len (xs, 0)
end

withtype {i:nat} <> => ’a list(i) -> int(i)
(* empty tuple <> is used since ’length’ is not recursive *)

fun acc p cs k =
case p of

Empty => k (cs)
| Char(c) =>

(case cs of
[] => false

| c’ :: cs’ => if (c = c’) then k (cs’) else false)
| Plus(p1, p2) => (* in this case, k is used for backtracking *)

if acc p1 cs k then true else acc p2 cs k
| Times(p1, p2) => acc p1 cs (fn cs’ => acc p2 cs’ k)
| Star(p0) =>

if k (cs) then true
else acc p0 cs (fn cs’ =>

if length(cs’) = length(cs) then false
else acc p cs’ k)

withtype {n:nat} pattern(n) ->
{i:nat} <n, i> => char list(i) ->
({i’:nat | i’ <= i} char list(i’) -> bool) -> bool

(* ’explode’ turns a string into a list of characters *)
fun accept p s =

acc p (explode s) (fn [] => true | _ :: _ => false)
withtype <> => pattern -> string -> bool

Figure 8. An implementation of pattern matching on strings



systems such as NuPrl [2], Coq [4], Isabelle [8] and PVS [9],
our approach to program termination is weaker (in the sense
that [many] fewer programs can be verified terminating) but
more automatic and less obtrusive to programming. We have
essentially designed a mechanism for program termination
verification with a language interface that is to be used dur-
ing program development cycle. We consider this as the main
contribution of the paper. When applied, the designed mech-
anism intends to facilitate program error detection, leading
to the construction of more robust programs.

7 Conclusion and Future Work

We have presented an approach based on dependent types
in DML that allows the programmer to supply metrics for
verifying program termination and proven its correctness.
We have also applied this approach to various examples that
involve significant programming features such as a general
form of recursion (including mutual recursion), higher-order
functions, algebraic datatypes and polymorphism, support-
ing its usefulness in practice.

A program property is often classified as either a safety
property or a liveness property. That a program never per-
forms out-of-bounds array subscripting at run-time is a safety
property. It is demonstrated in [17] that dependent types in
DML can guarantee that every well-typed program in DML
possesses such a safety property, effectively facilitating run-
time array bound check elimination. It is, however, unclear
(a priori) whether dependent types in DML can also be used
for establishing liveness properties. In this paper, we have
formally addressed the question, demonstrating that depen-
dent types in DML can be combined with metrics to estab-
lish program termination, one of the most significant liveness
properties.

Termination checking is also useful for compiler opti-
mization. For instance, if one decides to change the exe-
cution order of two programs, it may be required to prove
that the first program always terminates. Also, it seems fea-
sible to use metrics for estimating the time complexity of
programs. In lazy function programming, such information
may allow a compiler to decide whether a thunk should be
formed. In future, we expect to explore along these lines of
research.

Although we have presented many interesting examples
that cannot be proven terminating with structural orderings,
we emphasize that structural orderings are often effective in
practice for establishing program termination. Therefore, it
seems fruitful to study a combination of our approach with
structural orderings that handles simple cases with either au-
tomatically synthesized or manually provided structural or-
derings and verifies more difficult cases with metrics sup-
plied by the programmer.
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