Dependent Types for Program Termination Verification *

Hongwei Xi
University of Cincinnati
hwxi@ececs.uc.edu

Abstract ecution. However, termination checking in a realistic pro-
gramming language that supports general recursion is often
Program termination verification is a challenging re- prohibitively expensive given that (a) program termination
search subject of significant practical importance. Whilein such a language is in general undecidable, (b) termination
there is already a rich body of literature on this subject, it checking often requires interactive theorem proving that can
is still undeniably a difficult task to design a termination be too involved for the programmer, (c) a minor change in a
checker for a realistic programming language that supportsprogram can readily demand a renewed effort in termination
general recursion. In this paper, we present an approach tachecking, and (d) a large number of changes are likely to be
program termination verification that makes use of a form ofmade in a program development cycle. In order to design a
dependent types developed in Dependent ML (DML), demoriermination checker for practical use, these issues must be
strating a novel application of such dependent types to esproperly addressed.
tablishing a liveness property. We design a type system that There is already a rich literature on termination verifica-
enables the programmer to supply metrics for verifying pro-tion. Most approaches to automated termination proofs for
gram termination and prove that every well-typed programeither programs or term rewriting systems (TRSs) use var-
in this type system is terminating. We also provide realistidous heuristics, some of which can be highly involved, to
examples, which are all verified in a prototype implemen-synthesize well-founded orderings (e.g., various path order-
tation, to support the effectiveness of our approach to proings [3], polynomial interpretation [1], etc.). While these
gram termination verification as well as its unobtrusivenessapproaches are mainly developed for first-order languages,
to programming. The main contribution of the paper liesthe work in higher-order settings can also be found (e.g.,
in the design of an approach to program termination veri-[7]). When a program, which should be terminating if im-
fication that smoothly combines types with metrics, yieldingplemented correctly, cannot be proven terminating, it is of-
a type system capable of guaranteeing program terminationen difficult for the programmer to determine whether this
that supports a general form of recursion (including mutualis caused by a program error or by the limitation of the
recursion), higher-order functions, algebraic datatypes, andheuristics involved. Therefore, such automated approaches
polymorphism. are likely to offer little help in detecting program errors that
cause nonterminating program execution. In addition, auto-
mated approaches often have difficulty handling realistic (not
necessarily large) programs.

The programmer can also prove program termination in
o) various (interactive) theorem proving systems such as NuPrl
Programming is notoriously error-prone. As a CONSe-[2], Coq [4], Isabelle [8] and PVS [9]. This is a viable prac-
quence, a great number of approaches have been developgk and various successes have been reported. However, the
to facilitate program error d_etect|on. In practice, the pro-main problem with this practice is that the programmer may
grammer often knows certain program properties that musften need to spend so much time on proving the termination
hold in acorrectimplementation; it is therefore an indication of 5 program compared with the time spent on simply im-
of program errors if the aptual |mplem§ntat|on violates SOM&lementing the program. In addition, a renewed effort may
of these properties. For instance, various type systems hay@ required each time when some changes, which are likely
been designed to deteqt program errors that cause violatiofg 5 program development cycle, are made to the program.
of the supported type disciplines. Therefore, the programmer can often feel hesitant to adopt

Itis common in practice that the programmer often knowsinteractive) theorem proving for detecting program errors in
for some reasons that a particular program should termigeneral programming.

nate if implemented correctly. This immediately implies
that a termination checker can be of great value for detec;‘-}
ing program errors that cause nonterminating program ex:

1 Introduction

We are primarily interested in finding a middle ground. In
articular, we are interested in forming a mechanism in a pro-
gramming language that allows the programmer to provide
*Partially supported by NSF grant no. CCR-0092703 keyinformation needed for establishing program termination

fun ack m n =

if m = 0 then n+l

else if n = 0 then ack (m-1) 1 else ack (m-1) (ack m (n-1))
withtype {i:nat,j:nat} <ij> => int(i) -> int(j) -> [k:nat] int(k)

Figure 1. An implementation of Ackerman function

and then automatically verifies that the provided informationric (i — 1,1) to the firstack sincem — 1 and1 have types
indeed suffices. An analogy would be like allowing the userint(i — 1) andint(1), respectively; similarly, we attach the
to provide induction hypotheses in inductive theorem prov-metric (i — 1, k) to the second.ck, wherek is assumed to
ing and then proving theorems with the provided inductionbe some natural number, and the mettig — 1) to the third
hypotheses. Clearly, the challenging question is how suchck; it is obvious that(i — 1,1) < (i,), (i — 1, k) < (4, j)
key information for establishing program termination can beand (i,j — 1) < (i,j) hold, where< is the usual lexico-
formalized and then expressed. The main contribution of thigiraphic ordering on pairs of natural numbers; we thus claim
paper lies in our attempt to address the question by presenthat the functioruck is terminating (by a theorem proven in
ing a design that allows the programmer to provide througtthis paper). Note that although this is a simple example, its
dependent types such key information in a (relatively) simplgermination cannot be proven with (lexicographical) struc-
and clean way. tural ordering (as the semantic meaning of both addition

It is common in practice to prove the termination of recur-and subtraction- is needed}.
sive functions with metrics. Roughly speaking, we attach a More realistic examples are to be presented in Sec-
metric in a well-founded ordering to a recursive function andtion 5, involving dependent datatypes [15], mutual recursion,
verify that the metric is always decreasing when a recursivéigher-order functions and polymorphism. The reader may
function call is made. In this paper, we present an approacfead some of these examples before studying the sections on
that uses the dependent types developed in DML [18, 14] téechnical development so as to get a feel as to what can actu-
carry metrics for proving program termination. We form a ally be handled by our approach.
type system in which metrics can be encoded into types and Combining metrics with the dependent types in DML
prove that every well-typed program is terminating. It shouldposes a number of theoretical and pragmatic questions. We
be emphasized that we are not here advocating the desidghiefly outline our results and design choices.
of a programming language in which only terminating pro- The first question that arises is to decide what metrics we
grams can be written. Instead, we are interested in designirghould support. Clearly, the variety of metrics for establish-
a mechanism in a programming language, which, if the proing program termination is endless in practice. In this pa-
grammer chooses to use it, can facilitate program terminatioper, we only consider metrics that are tuples of index expres-
verification. This is to be manifested in that the type systensions of sortnat and use the usual lexicographic ordering
we form can be smoothly embedded into the type system dfo compare metrics. The main reasons for this decision are
DML. We now illustrate the basic idea with a concrete exam-that (a) such metrics are commonly used in practice to estab-
ple before going into further details. lish termination proofs for a large variety of programs and

In Figure 1, an implementation of Ackerman function is (P) constraints generated from comparing such metrics can
states that for natural numbeirsand j, this function takes tyPe-checking DML programs. Note that the usual structural
an argument of typent(i) and another argument of type Ordering orfirst-orderterms can be obtained by attaching to

we have refined the usual integer typet into infinitely ~ réadily accomplished by using the dependent datatype mech-

many singleton typesnt(a) for « = 0,1,—1,2,—2,... anismin DML. However, we are currently unable to capture
such thatint(a) is precisely the type for integer expres- Structural ordering on higher-order terms.
sions with value equa' ta. We write {i:nat,j:nat } The second qUeSt|On is about eStabllshIng the soundness

for universally quantifying over index variablésand j of ~ Of our approach, that is, proving every well-typed program
sort nat, that is, the sort for index expressions with valuesin the type system we design is terminating. Though the idea
being natural numbers. AISO, we Wr{ﬂenat] |nt(k) men“oned n the eXample Of ACkel’man funct|0n seems intu-

for Sk : nat.int(k), which represents the sum of all types itive, this task is far from being trivial because of the pres-
int(k) for k = 0,1,2,.... The novelty here is the pajt, j) ~ €nce of higher-order functions. The reader may take a look
in the type annotation, which indicates that this is the metat the higher-order example in Section 5 to understand this.
ric to be used for termination checking. We now informally We seek a method that can be readily adapted to handle var-
explain how termination checking is performed in this caseious common programming features when they are added,
assume th"f‘i an,dj are tWO, natural nqmbers and andn 1There is an implementation of Ackerman function that involves only
have typesint (i) and int(j), respectively, and attach the pimitive recursion and can thus be easily proven terminating, but the point
metric (i, j) to ack m n; note that there are three recursive we drive here is that this particular implementation can be proven terminat-
function calls toack in the body ofack; we attach the met- ing with our approach.

including mutual recursion, datatypes, polymorphism, etc{a : int | a > 0}. We usei(7) for a base type indexed with
This naturally leads us to the reducibility method [12]. We a sequence of index expressianghich may be empty. For
are to form a notion of reducibility for the dependent typesinstancepool(0) andbool(1) are types for boolean values
extended with metrics, in which the novelty lies in the treat- false andtrue, respectively; for each integérint (i) is the
ment of general recursion. This formation, which is novel tosingleton type for integer expressions with value equal to
our knowledge, constitutes the main technical contribution We use¢ = P for a satisfaction relation, which means
of the paper. P holds undep, that is, the formuld¢) P, defined below, is
The third question is about integrating our terminationsatisfied in the domain of integers.
checking mechanism with DML. In practice, it is common

to encounter a case where the termination of a funcfide- (=2 (¢,a:int)® = (¢)Va : int.®
pends on the termination of another functigrvhich, unfor- (p,a:{a:y|P}H® = (d,a:v)(PDD)
tunately, is not proven for various reasons, e.g., it is beyond (¢, P)® = (¢)(P D ®)

the reach of the adopted mechanism for termination check-

ing or the programmer is simply unwilling to spend the effort For instance, the satisfaction relation
proving it. Our approach is designed in a way that allows the

programmer to provide a metric in this case for verifying the a:nat,a#0FEa—1>0
termination off conditional on the termination @f, which
can still be useful for detecting program errors. holds since the following formula is true in the integer do-

The presented work builds upon our previous work on themain.
use of dependent types in practical programming [18, 14].
While the work has its roots in DML, it is largely unclear, Va:int.a>0D(a#0D>a—12>0)
a priori, how dependent types in DML can be used for es-
tablishing program termination. We thus believe that it is aNote that the decidability of the satisfaction relation depends
significant effort to actually design a type system that com-on the constraint domain. For the integer constraint domain
bines types with metrics and then prove that the type syswe use here, the satisfaction relation is decidable (as we do
tem guarantees program termination. This effort is furthenot accept nonlinear integer constraints).
strengthened with a prototype implementation and a variety We usella : ~.7 and ¥a : ~.7 for the usual depen-

of verified examples. dent function and sum types, respectively. A type of form
The rest of the paper is organized as follows. We formlla : 7.7 is essentially equivalent da; : 7 . = Hay, : vp.7,
a languageML"* in Section 2, which essentially extends Where we use : y fora : vi,...,a : ya. = We also in-

the simply typed call-by-valug-calculus with a form of de- troduceA-variables ang-variables inMLg > and user and
pendent types, developed in DML, and recursion. We therf for them, respectively. A lambda-abstraction can only be
extendMLOH’Z to ML in Section 3, combining metrics formed over a\-variable while recursion (via fixed point op-

. 0,< TLY , erator) must be formed overavariable. A\-variable is a
with types, and prove that every programiii, ¢’ is termi- \aue put gp-variable is not.
nating. In Section 4, we enridﬂLgé with some significant We use for abstracting over index variabldam for ab-

programming features such as datatypes, mutual recursigtracting over variables, arfdn for forming recursive func-
and polymorphism. We present some examples in Section 5ions. Note that the body after eitharor fun must be a
illustrating how our approach to program termination verifi- value. We uséi | e) for packing an index with an expres-
cation is applied in practice. We then mention some relatedion e to form an expression of a dependent sum type, and

work and conclude. open for unpacking an expression of a dependent sum type.
There is a full paper available on-line [16] in which the
reader can find details omitted here. 2.2 Static Semantics
2 MLOH’Z We write¢ I 7 : * to mean that is a legally formed type
under¢ and omit the standard rules for such judgments.
We start with a languag®fL;"~, which essentially ex- index substitutions 8; == [| 6;[a — i]
tends the simply typed call-by-valuecalculus with a form substitutions 0 == [0z el|0[f — e
of dependent types and (general) recursion. The syntax for
MLg"* is given in Figure 2. A substitution is a finite mapping arjrepresents an empty
mapping. We usé; for a substitution mapping index vari-
2.1 Syntax ables to index expressions addm(¢;) for the domain of

0;. Similar notations are used for substitutions on variables.

We fix an integer domain and restrict type index expres-Ve Write ¢[6;] (e[¢]) for the resuit from applying; (¢) to

sions, namely, the expressions that can be used to index® Wheree can be a type, an expression, etc. The standard

type, to this domain. _This is a sorted domain and subset sorts 2in practice, we also have types of fofi# : 7.7, which we omit here
can be formed. For instance, we usg for the subset sort for simplifying the presentation.

index constants cr el =2]=1]0]1]2]---

index expressions i u= alcer|intig | in— g | i1 *xin | i1/l
indeXprOpOSitionS P = i1<i2|i1§i2‘Z‘1>i2|7;122.2|i1:i2|i17éi2‘Pl/\P2|P1\/P2
index sorts v == nt|{a:vy| P}
index variable contexts ¢ == -|¢,a:7v| o, P
index constraints ® = P|PD>P|Va:7.D
types T ou= SO | a7 |Za:y.T
contexts r == |T,e:7|D,f:7
constants ¢ = truel false |0|1]—-1]2]—-2]---
expressions e == cla|f|if(e,er,e2) | M@ :Fv|lam z: T.e | ei(e2) |
fun fla: 7] :7isv|e[i]| (i|e) | opene; as (a | x) in ey
values v ou= clax|Ad:Fou|lamaz:Te] (i|v)

Figure 2. The syntax for ML{">

op;The:m ¢oFbm=m D(z)=r71 L(f)y=r1
¢; T Fe:m (type-eq) o;T'Fx:T (type-A-var) ;T for (type-p-var)
¢, a:v;'kFov:r o TFe:lla: 1 oFT: 79

(type-ilam) 7 (type-iapp)

;P Ad:Fo:1d: 7.1 ;D e[l :r[a— 1
a: ", :Ma:y1hko:
o, a 'y,l",ﬂf ﬂHa :YT ’UATH (type-fun)
o;THfun fla: 7] :7isv:d: 7.7
;T F e :bool(i) ¢,i=.1;rl—6127' ¢, i=0;"kFey:7 (type-if
o; T Fif(e,eq,e0) i 7
p;T'Fep:im—1m ¢ I'ker:m

type-a
5T F erles) : 72 (type-app)
o;'key :Xa:vm d,a:v;Tx:mbes:m (type-open) obi:y ¢;TFe:tlar— 1]
¢;T'Fopene; as {a|x)ines: 1 ype-op o;TH(i|e):Xa:~.T

;e :mbFe:m
o;'Flamax:m.e:m —

(type-lam)
T2

(type-pack)

Figure 3. Typing Rules for ML{">

definition is omitted. The following rules are for judgments generates constraints during type-checking.
of form ¢ + 6; : ¢’, which roughly means that has “type”

¢'. pEi=j PETI=EN dETR=ED
. PEN)=6(J) PSETMoT=T—n
Gr - Seremey) paTET=r baiy ="

o0 ¢ oFi:q[b] (sub-i-var) oG Ar=lad: 57 ¢EZa:y7=Xa:~vy.7

prOrla—i]: ¢’ a:y
¢pFOr: ¢ ¢ Plo]
oF0r:¢ P

(sub-i-prop) We present the typing rules faiL{ > in Figure 3. Some

of these rules have obvious side conditions, which are omit-
. . _ ted. For instance, in the rulgype-ilam), @ cannot have free
Vwafi;\k/)ﬁgi%%réglr—g df?%th%s/nglgbgghttigﬁysy the set of oo rrences i, The following lemma plays a pivotable
. ; and@, we . . h biect reduction th w6 wh

say¢:T F (6:60) : (¢/;T) holds if ¢ F 6; : ¢ and in proving t efs.u Jec_lrelug ion theorem idiL; ", whose
dom(#) = dom(I”) and¢:T[8;] - 6(z) : I'(x)[8;] for standard proof is available in [14].
all x € dom(T"). _ _

We write ¢ |= 7 = 7' for the congruent extension of Lemma 2.1 Assumep, ¢";I,I" - e : 7 is derivable and
¢ k=i = j from index expressions to types, determined by®; I' - (61;0) : (¢';I") holds. Then we can derive I'[0;]
the following rules. It is the application of these rules thatel0:](0] : 7[61].

2.3 Dynamic Semantics

We present the dynamic semanticsi\tbLg[’Z through the

use of evaluation contexts defined below. Certainly, there ar
other possibilities for this purpose, which we do not explore

here.3

evaluation contextst
[[if(E,e1,e2) | E[1] | E(e) | v(E) |
(i|E) |open Fas (a|z)ine

We write E[e] for the expression resulting from replacing
the hole[] in E with e. Note that this replacement caever
result in capturing free variables.

Definition 2.2 A redex is defined below.

e if(c,e1,eq) are redexes for = true, false, which re-
duce toe; ande,, respectively.

(lam z : 7.e)(v) is a redex, which reduces tdz — v].

Lete befun f[a : 7] : 7 is v Thene is a redex, which
reduces to\a : Y.vu[f +— e].

(M@ : 4.v)[1] is a redex, which reduces tdad — 1.

open (i |
to efa +— 1]

v) as (a | z) in e is a redex, which reduces
[z — v].

We user for a redex and write- — ¢ if r reduces tce. If
e1 = E[r], ea = Ele] andr — e, we writee; — e and say
e1 reduces ta, in one step.

Let —* be the reflexive and transitive closure-ef. We say
ey reduces tas (in many steps) ity —* e,. We omit the

standard proof for the following subject reduction theorem

which uses Lemma 2.1.

Theorem 2.3 (Subject Reduction) Assume + e : 7 is
derivable inML{ . If e <* ¢/, then-;- - ¢’ : 7 is also
derivable inML§">.

2.4 Erasure

We can simply transformML"> into a languageéML,

by erasing all syntax related to type index expressions in

MLg">. Then ML, basically extends simply typed-
calculus with recursion. Lgt| be the erasure of expression
e. We havee, reducing toe, in ML{"> implies |e; | reduc-
ing to |ez| in MLg. Therefore, ife is terminating inMLgI’Z
then|e| is terminating inMLy. This is a crucial point since
the evaluation of a program FIL; "> is (most likely) done
through the evaluation of its erasure ifiL,. Please find
more details on this issue in [18, 14].

3 MLyZ

We combine metrics with the dependent typedfih, >,
orming a languag@/IL, . We then prove that every well-

typed program ifML{"> is terminating, which is the main
technical contribution of the paper.
3.1 Metrics

We use< for the usual lexicographic ordering on tuples
of natural numbers ane: for the strict part of<. Given

two tuples of natural numbexs,, ..., 4,) and(:}, ...,),
(i1, iny < (i},...,i.,) holds ifn = n' and for some
0<k<mn,i;=1forj=1,....k—1andiy < i,. Evi-

dently, < is a well-founded. We stress that (in theory) there
is no difficulty supporting various other well-founded order-
ings on natural numbers such as the usual multiset ordering.
We fix an ordering solely for easing the presentation.

Definition 3.1 (Metric) Lety = (i4,...,i,) be a tuple of
index expressions angl be an index variable context. We
say u is a metric undew if ¢ - ¢; : nat are derivable for
j=1,...,n. We writeg - u : metric to meanu is a metric
underg.

A decorated type ilMLOHé is of formIl@ : ¥.u = 7, and
the following rule is for forming such types.

G, a: b T:x ¢,d:FF p: metric
oFId:ypu=1:%

The syntax ofVILg 2 is the same as that fiLg"> except

that a context’ in MLg' > maps every-variablef in its do-

'main to a decorated type and a recursive functiommﬁé
is of form fun f[@ : 4] : 4 = 7 is v. The process of

translating a source program into an expressid)vﬁm?’é is
what we callelaboration which is thoroughly explained in
[18, 14]. Our approach to program termination verification
is to be applied to elaborated programs.

3.2 Dynamic and Static Semantics

The dynamic semantics MLE{’E is formed in precisely

the same manner as thatMdfL;"> and we thus omit all the
details.

The difference betweeMLg[é andML"” lies in static
semantics. There are two kinds of typing judgments in
MLOH’E, which are of formsg); ' Fe: 7andp; I'-e: 7 <
1o We call the latter a metric typing judgment, for which
we give some explanation. Supposd’ e : 7 <5 o
andI'(f) = @ : 4.u = 7; roughly speaking, for each
free occurrence of in e, f is followed by a sequence of

SFor instance, it is suggested that one present the dynamic semantics [Jd€X expressionsi] such thatu[a — 1], which we call
the style of natural semantics and then later form the notion of reducibilitythe label of this occurrence of, is less tharu, Ur?deréb- .
for evaluation rules. Now suppose we have a well-typed closed recursive function

e = fun f[d@: 4] : p = 7 is vin MLy 2 andrare of sortsy;
then fli][f — e] = e[i] —* v[@ — 1][f — €] holds; by the
rule (type-fun), we know that all labels of in v are less than
ul@ — 1], which is the label off in f[i]; since labels cannot

decrease forever, this yields some basic intuition on why all 3

recursive functions iIMLOHé are terminating. However, this

intuitive argument is difficult to be formalized directly in the
presence of high-order functions.

The typing rules iMMLL"Z for a judgment of formp; T +

0,<
e : T are essentially the same as thos@/fih; "> except the

following ones.

1. 7 is a base type. Thenis reducible.

2. 7 =1 — 72. Thene is reducible ife(v;) are reducible
for all reducible values, of typer.

. 7 =1Id : 4.71. Thene is reducible ife[1] are reducible
forallT: v

4. 7 = ¥a : v.1y. Theneis reducible ifv = (i | vy) for
somei andv; such thatv; is a reducible value of type
T1[a — i].

Note that reducibility isonly defined for closed expressions
that reduce to values.

F(f):Hc_i::y'.,u:T .
o; 0 fo1la: v (type-p-var) Proposition 3.6 Assume that is a closed expression of type
¢,a@: L, f 1@ : J.pu :> T % VT <<f M T ande — ¢ holds. There is reducible if and only i¢’ is
(type fun) reducible.
o; T Hfun fld: 7] :p=7isv: 1d
We present the rules for deriving metric typing judgments inP™e0f By induction on the complexity of. u
Figure 4. GlVG”M = (i1,...,0p) @ndp’ = (i,..., 1), The following is a key notion for handling recursion,

¢ E p < /' means that for somé < k < n, ¢,i; =
Wy djo1 = i;;l E=i; < z; are Sa'[ISerd.fOF all < j < k
andg, i, =17, ..., ik—1 = i},_, = i <1}, is also satisfied.

Lemma 3.2 We have the following.

1. Assumep, ¢’;T',I” + e : 7 is derivable andg;T" +
(01;0) : (¢';T) holds. Then we can derivg T'[6;] -
el0r][0] : [01].

2. Assumep, ¢;T,I" + e : 7 < u is derivable and
¢; T F (0r;0) : (¢/;T7) holds andf € dom(T"). Then
we can derivep; I'[0;] - e[0/](0] : T[07] <5 p[0r].

which, though natural, requires some technical insights.

Definition 3.7 (u-Reducibility). Let be a well-typed closed
recursive functiorfun f[@ : 4] : p = 7 is v and g be a
closed metric.e is pp-reducible ife[i] are reducible for all

T: ¥ satisfyinguld@ — 1] < po.

Definition 3.8 Let be a substitution that maps variables to
expressions; for every € dom(#), 0 is z-reducible ifd(z)

is reducible; for everyf € dom(6), 8 is (f, 115)-reducible if
0(f) is py-reducible.

In some sense, the following lemma verifies whether the
notion of reducibility is formed correctly, where the difficulty

Proof (1) and (2) are proven simultaneously by struc-probably lies in its formulation rather than in its proof.

tural induction on derivations o, ¢’;T",TV + e : 7 and
¢, ¢TI Fe: 17 <5 p, respectively. [
Theorem 3.3 (Subject Reduction) Assume + ¢ : 7 is
derivable inML{ 2. If e —* ¢, then;- I ¢ : 7 is also
derivable inMLg 2 .

Obviously, we have the following.

Proposition 3.4 Assume thaD is a derivationg;I" e :
T <t po. Then then there is a derivation @fI' - e : 7
with the same heighisD.

3.3 Reducibility

We define the notion of reducibility for well-typed closed

expressions.

Definition 3.5 (Reducibility) Suppose thatis a closed ex-
pression of type ande —* v holds for some value. The

reducibility ofe is defined by induction on the complexity of ¢

T.

Lemma 3.9 (Main Lemma) Assume thatI' - e : 7 and
-k (01;0) : (¢;T) are derivable. Also assume thét
is z-reducible for everyr € dom(T") and for everyf €
dom(T"), ;T[] F e[f;] : 7[07] <5 py is derivable andy
is (f, pur)-reducible. Ther[6;][0] is reducible.

Proof Let D be a derivation of;T" ¢ : 7 and we pro-
ceed by induction on the height &f. We present the most
interesting case below. All other cases can be found in [16].
Assume that the following rul&ype-fun) is last applied in

D,

¢,dy - y1; 1, fr 2 1ldy
¢; T+ fun fila1 : 1

e = TR T L

}Z/Ll = 11 is vy : Ia, :’371.7‘1

where we havee = fun fi[d; : %] : w1 = 71 is vy
andr = Ild; : 9;.7;. Suppose that* = e[&;][@] is
not reducible. Then by definition there exist: 47 such
that e*[1p] is not reducible but*[1] are redu0|ble for all
o Ay satisfying i@y — 1 < pflan — 1), where
yi = H[0r] andpu} = pa[fr]. In other wordse* is py, -

“For a minor technicality reason, we count neither of the rulesfeducible foruy = uj [d1 — Tp]. Note that we can derive

(type-p-var) and(<-p-var) when calculating the height of a derivation.

F[@[],fl ZHC_L'1 :ﬁ’f.ﬁ[&;] = vl[GI[&’l (g To]] 17'1[(9[[51 =

I'(x)
oo 7 <5 po
¢ TFe:bool(d) <fpo ¢i=1TFe 7

(<-A-var)

I(f)=7 Hh#S

o TE fi:7 <5 1o

(«-p-var)

L po G, i=0;'Feg: 7 <y po

o; T Fif(e,e1,eq) :
o, a: 7D Fv:T <5 po

oD keIld: 7.1 <5 o

<-if
T Ly o ()

F1: 4
orT:y (<-iapp)

-ilam
g LAy 1lad: 7.1 <5 po (<)

ol z:mbe:m <y o

o lFer:m — 1 <5 1o

¢ kell] :7[d—1) <5 po
;T ey m <5 o

-lam
p;Flamzx:m.e: 1 — T2 <5 Lo (<)

< -3
¢; ' ei(e2) : T2 <5 po (<-app)

gb,d’l :%;F,fl ZHC_L'1 A :>’§71.7'1 F V1T <<f1 1251

¢,ay 1, f1 a1

Fep T <5 po

¢;F F fun fl[al 1’71] T =T is (5 Hd’l 171.T1 <<f Ho
N(fy=Na:yu=r1

PET:7 ¢ pld—1 <pg

(<-fun)

GTF 0 rld 1 < fo
iy g Tke:tla—i <y po

(x-lab)

T E(i|e): Xa:v.T <5 1o
d,a:v;lo i ber:m <5 o

;e Xa: v <5 po

(<-pack)

¢;I'Fopene;as(a|x)ines:m <5 1o

Figure 4. Metric Typing Rules for

10]] < py,. By Proposition 3.4, there is a derivati@n of
,C_L'l : ’S/'l;].—‘,fl : Ia; - 71./11 =>mntkov:n such that the
height of D, is less than that ab. By induction hypothesis,
we have thatt = v [07[@; — 10]][0[f1 — e*]] is reducible.
Note thate*[1p] —* v} and thuse*[1p] is reducible, contra-
dicting the definition ofy. Thereforee* is reducible.
[

The following is the main result of the paper.

Corollary 3.10 If -;- F e : 7 is derivable inMLgé, thene
in MLE’; is reducible and thus reduces to a value.

Proof The corollary follows from Lemma 3.9.

4 Extensions

We can extendMLg 2 with some significant program-

(<-open)

I,s
MLy~

(71,...,) for the type of an expression representingu-
tually recursive functions of types, ..., r,, respectively,
which should not be confused with the product of types
T1,...,Tn. AlSO, then in e.n must be a positive (constant)
integer. Letw be the following expression.

funs f1[d; : 71] : 71 is vy and...and f,[@, : Yn] : Th IS vy

Then for everyl < k < n, v.k is a redex, which reduces to
Ay Arvg[fi — vl fn—om] Letf = fi,oo0 fa
and we form a metric typing judgmemt " I- ¢ <y Ho for

verifying that all labels off1, . . ., f,, in e are less thap, un-
der¢. The rules for deriving such a judgment are essentially
the same as those in Figure 4 excegtlab), which is given
below.

finf T(f)=Ta:Fu=71 ¢k npuld—1<pu
& T f[i]: 7ld— 1 < po

ming features such as mutual recursion, datatypes and polythe rule(«<-funs) for handling mutual recursion is straight-
morphism, defining the notion of reducibility for each ex- forward and thus omitted.

tension and thus making it clear that Lemma 3.9 still holds

after the extension. We present in this section the treatmerefinition 4.1 (Reducibility) Let be a closed expression of

of mutual recursion and currying, leaving the details in [16].type(ry, ..., T,) ande reduces ta. e is reducible ife.k are
reducible fork =1,...,n.

4.1 Mutual Recursion
4.2 Currying

The treatment of mutual recursion is slightly different
from the standard one. The syntax and typing rules for A decorated type must so far be of fodi@ : ¥.u = 7
handling mutual recursion are given in Figure 5. We useand this restriction has a rather unpleasant consequence. For

types T u= | (Wdy A7, ay : AnTn)
expressions e = ---|emn|funs fi[d, : 1] : 7 isv; and...and f,[d, : Y,] : 7 is v,
values v u= | funs fi[dy :H1] : 71 isv; and...and f,[@, : Yn] : T IS U,

f:fl,...,f” TZ(Hal ’?1 T1y--- Hdn ’?n Tn)
¢361::Y‘l;rafl:H&'l:?l:ﬂlﬁTla-"vfn Han-77z-ﬂn:>TnFU1 Tl<<f'u1

(bac_in:ﬁ;n;rafl:H@’IZVI:Ml:}Tla“wfn Han~'7n-//fn:>7—nl_vn-7—n <<fM
¢; Tk funs fi[d@; : H1] 1 = 7 isvy and...and f,[d, : Yn] : pn = This vy i T

o T ke (m,...,mm) 1<k<n
¢; T ek Ty

(type-funs)

(type-choose)

Figure 5. The Syntax and Typing Rules for Mutual Recursion

instance, we may want to assign the following typeo the 5 Practice
implementation of Ackerman function in Figure 1:

{i:nat } int(i) -> {j;nat } int() -> int , We have implemented a type- checkerM)L0< ina pro-
hich is f I . totype implementation of DML and experimented with vari-
whichis formally written as ous examples, some of which are presented below. We also

[a; : nat.int(ay) — las : nat.int(az) — Ya : nat.int(a). address the practicality issue at the end of this section.

If we decorater with a metricyu, theny can only involve
the index variable; , making it impossible to verify that the 9-1 Examples
implementation is terminating.
We generalize the form of decorated types to the follow- We demonstrate how various programming features are
ing so as to address the problem. handled in practice by our approach to program termination
Hay :y1.m — - = Uay : Ypomn = ad : Yop = 7. verification.
Also, we introduce the following form of expressienfor primitive Recursion The following is an implementation
representing a recursive function. of the primitive recursion operatdt in Godel’s7, which is

fun fla; : 1|(z1 i 71) - [@n s Fnl(@n)@ 7] 2 T is €g clearly typable inMLOHé. Note thatZ and .S are assigned
the typesNat(0) andIIn : nat.Nat(n) — Nat(n + 1),

We require that, be a value ifn = 0. In the following, we X
respectively.

only deal with the case = 1. Forn > 1, the treatment is

similar. Fore = fun f[d@; : %1](z1 : 71)[@ : 7] : 7 is ep, We datatype Nat with nat =

havee — \d; : ’71.lam Ty T1.AA ¢ ’7.60 and the fO“OWing Z(O) | {n'nat} S(n+1) of Nat(n)
typing rule '
¢ a1 :Y1,a ;0 f - To,x1:71|—6:7'<<f,u fun(a) R Z u v =
;T F fun flay: Ai)(er:m)@: 9] p=Tise: 7 Witﬁty'pg Smuv=vnRnuy
wherery = Ila; : 1. — Ild : 4.7, and the following {n:nat} <n> =>
metric typing rule Nat(n) -> 'a -> (Nat -> 'a -> 'a) -> 'a
* 1 . 1 *
GET T GET:A@ — 1 (* Nat is for [n:nat] Nat(n) in a type *)
¢ = pln — aj][a ~ 1 < o By Corollary 3.10, it is clear that every term 1A is termi-
;T ey s mfd — 1] <5 po nating (or weakly normalizing). This is the only example in
I'(f)=Ha, : Y11 —a:yp=r7 this paper that can be proven terminating with a structural
G T F f)(en)] : 7]dr — 1)@ — 1) <z po ordering. The point we make is that though it seems

. o) “evident” that the use of? cannot cause non-termination, it
Definition 4.2 (u-reducibility) Lete be a closed recursive s not trivial at all to prove every term iff is terminating.
functionfun f[ai : ¥i](z1 : 7))@ : 7] : 7 is e andpug be Notice that such a proof cannot be obtained in Peano
a closed metrice is po-reducible ife[r;](v)[1] are reducible arithmetic. The notion of reducibility is precisely invented
for all reducible valuesy : 7i[a; — T and1i : 41 and for overcoming the difficulty [12]. Actually, every term in
1: yldy — 1] satisfyinguldy — 11][@ — 1] < po. T is strongly normalizing, but this obviously is untrue in

IS
ML <.

Nested Recursive Function Call The program in Figure 6

involving a nested recursive function call implements Mc-Wherey is {a :

Carthy’s “91” function. Thewithtype clause indicates
that for every integet, f91(x) returns intege91 if « < 100
andx — 10 if x > 101. We informally explain why the

last pattern matching clause; the label attached to this call is
(n,4"), wherei’ is the length of:s’; we havei’ < i since the
continuation has the typHa' : 7.(char)list(a’) — bool,

nat | a < i}; we havei # i’ since
length(cs') = length(cs) must be false when this call hap-
pens; therefore we havé < i ® and then(n, ') < (n,i). It

is straightforward to see that the labels attached to other calls

metric in the type annotation suffices to establish the termito acc are less tharin,i). By Corollary 3.10,acc is termi-

nation of f91; for the inner call tof91, we need to prove that
¢ = max(0,101 — (i + 11)) < max(0,101 — 7) is satisfied
for ¢ = ¢ : int,i < 100, which is obvious; for the outer
call to 91, we need to verify thap, = max(0,101 — j) <
max(0,101 — i), whereg, is ¢, j : int, P andP is

(i+11<100Aj =91)V (i+11 > 101 Aj =i+ 11 —10)
If ¢ + 11 < 100, thenj = 91 andmax(0, 101 — j) = 10 <

12 <101 —4;if i+11 > 101,thenj =i +11-10=¢+1
andmax(0,101 — j) < 101 — ¢ (sinces < 100 is assumed

nating, which implies thatccept is terminating (assuming
explode is terminating). In every aspect, this is a non-trivial
example even for interactive theorem proving systems.
Notice that the tediength(cs’) = length(cs) in the body
of acc can be time-consuming. This can be resolved by using
a continuation that accepts as its arguments both a character
list and its length. In [5], there is an elegant implementa-
tion of accept that does some processing on the pattern to be
matched and then eliminates the test.
Run-time Check There are also realistic cases where termi-
nation depends on a program invariant that cannot (or is diffi-

in ¢). Clearly, this example can not be handled with acultto) be captured in the type system of DML. For instance,

structural ordering.

Mutual Recursion The program in Figure 7 implements
quicksort on a list, where the functions and par are de-
fined mutually recursively. We informally explain why this
program is typable irMLOHé and thusgs is a terminating
function by Corollary 3.10.

For the call topar in the body ofgs, the label is(0 +
0+ a,a + 1), wherea is the length ofcs’. So we need to
verify that¢y = (04+ 0+ a,a + 1) < (n,0) is satisfied for
¢ =mn:nat,a: nat,a + 1 = n, which is obvious.

For the two calls tags in the body ofpar, we need to
verify that¢ = (p,0) < (p+¢g+r,r+1)and¢ = (¢,0) <
(p+q+r,r+1)for¢p =p: nat,q : nat,r : nat,r = 0, both
of which hold sincep = p < p+q¢and¢ = ¢ < p + g and
¢ = 0 < 1. This also indicates why we need+ 1 instead
of r in the metric forpar.

For the two calls topar in the body ofpar, we need
to verify that¢ = ((p+ 1) + ¢+ a,a) < (p+q+1,7)
and¢ F (p+(¢+1) +aa) < (p+gq+mrr)for
¢ = p: nat,q : nat,r : nat,a : nat,r = a + 1, both of
which hold sincep = (p+1)+¢+a =p+q+rand
oEDP+(@+1)+a=p+q+rande = a < r. Clearly,

this example can not be handled with a structural ordering.

Higher-order Function The program in Figure 8 imple-
ments a functioruccept that takes a patterp and a string
s and checks whether matchesp, where the meaning of a
pattern is given in the comments.

The auxiliary functionacc is implemented in continua-
tion passing style, which takes a patterna list of char-
acterscs and a continuatiork and matches a prefix afs
againstp and callk on the rest of characters. Note that
is given a type that allow& to be applied only to a char-
acter list not longer thams. The metric used for proving
the termination ofacc is (n,i), wheren is the size ofp,
that is the number constructorsgnexcluding Empty) and
1 is the length ofcs. Notice the callacc p cs’ k in the

the following example is adopted from an implementation of
bit reversing, which is a part of an implementation of fast
Fourier transform (FFT).

fun loop (j, k) =

if (k<j) then loop (j-k, k/2) else j+k
withtype

{a:nat,b:nat} int(a) * int(b) -> int

Obviously,loop(1,0) is not terminating. However, we may
know for some reason that the second argument@f can
never bed during execution. This leads to the following im-
plementation, in which we need to check that> 1 holds
before callingoop(j — k, k/2) so as to guarantee thiat2 is

a positive integer.

fun loop (j, k) =
if (k < j) then
if (k> 1) then loop (j - k, k / 2)
else raise Impossible
else j + k
withtype {a:nat,b:pos} <max(0, a-b)> =>
int(@) * int(b) -> int

It can now be readily verified thabop is a terminating func-
tion. This example indicates that we can insert run-time
checks to verify program termination, sometimes, approxi-
mating a liveness property with a safety property.

5.2 Practicality

There are two separate issues concerning the practicality
of our approach to program termination verification, which
are (a) the practicality of the termination verification pro-
cess and (b) the applicability of the approach to realistic pro-
grams.

5Note thatlength(cs’) and length(cs) have the typesint(i’) and
int(4), respectively, and thugngth(cs’) = length(cs) has the type
bool (i’ = i), wheres’ = i equalsl or 0 depending on whethef equalsi.
Thus,i’ < ¢ can be inferredn the type system

fun 91 (x) = if (x <= 100) then f91 (f91 (x + 11)) else x - 10
withtype

{izint} <max(0, 101-i)> =>

int(i) -> [j:iint | (i<=100 A j=91) V (i>=101 A j=i-10)] int(j)

Figure 6. An implementation of McCarthy’s “91” function
fun('a) gs cmp xs =

case xs of [=> [] | x =z xs' => par cmp (X, [], [, xs")
withtype (a * 'a -> bool) -> {n:nat} <n,0> => ’a list(n) -> 'a list(n)

and(’a) par cmp (x, I, r, xs) =

case xs of
=>gscmp |l @ (x :: gs cmp 1)
| X 2 xs' => if cmp(x’, X) then par cmp (X, X’ = |, r, xs')

else par cmp (x, I, X' = r, xs)
withtype (a * 'a -> bool) -> {p:nat,g:nat,r:nat} <p+qg+r,r+i> =>
'‘a * ’a list(p) * 'a list(q) * ’'a list(r) -> ’a list(p+q+r+1)

Figure 7. An implementation of quicksort on a list

It is easy to observe that the complexity of type-checkingminating. Following [13], there is also a large amount of
in ML~ is basically the same as MLg"> since the only ~ Work on proving termination of logic programs. In [11], itis
added work is to verify that metrics (provided by the pro-reported that the Mercury compiler can perform automated
grammer) are decreasing, which requires solving some extrig@rmination checking on realistic logic programs.
constraints. The number of extra constraints generated from However, we address a different question here. We are
type-checking a function is proportional to the number of re-interested in checking whether a given metric suffices to es-
cursive calls in the body of the function and therefore is likelytablish the termination of a program and not in synthesiz-
small. Based on our experience with DML, we thus feel thating such a metric. This design is essentially the same as the
type-checking irMLOH’E is suitable for practical use. one adopted in [10], where it checks whether a given struc-

As for the applicability of our approach to realistic pro- tural ordering (possibly on high-order terms) is decreasing in
grams, we use the type system of the programming languag inductive proof or a logic program. Clearly, approaches
C as an example to illustrate a design decision. ObviouslyPased on checking complements those based on synthesis.
the type system of C is unsound because of (unsafe) type Our approach also relates to the semantic labelling ap-
casts, which are often needed in C for typing programs thaproach [19] designed to prove termination for term rewrit-
would otherwise not be possible. In spite of this practice, thang systems (TRSs). The essential idea is to differentiate
type system of C is still of great help for capturing programfunction calls with labels and show that labels are always
errors. Clearly, a similar design is to allow the programmerdecreasing when a function call unfolds. The semantic la-
to assert the termination of a function in DML if it cannot be belling approach requires constructing a model for a TRS to
verified, which we may catermination castCombining ter- verify whether labelling is done correctly while our approach
mination verification, run-time checks and termination castdoes this by type-checking.
we feel that our approach is promising to be putinto practice. The notion of sized types is introduced in [6] for prov-

ing the correctness of reactive systems. There, the type sys-

tem is capable of guaranteeing the termination of well-typed
6 Related Work programs. The language presented in [6], which is designed

for embedded functional programming, contains a significant

The amount of research work related to program terminarestriction as it only supports (a minor variant) of primitive
tion is simply vast. In this section, we mainly mention somerecursion, which can cause inconvenience in programming.
related work with which our work shares some similarity ei- For instance, it seems difficult to implement quicksort by us-
ther in design or in technique. ing only primitive recursion. From our experience, general

Most approaches to automated termination proofs for eifecursion is really a major programming feature that greatly
ther programs or term rewriting systems (TRSs) use variou§omplicates program termination verification. Also, the no-
heuristics to synthesize well-founded orderings. Such aption of existential dependent types, which we deem indis-
proaches, however, often have difficulty reporting comprepensable in practical programming, does not exist in [6].
hensible information when a program cannot be proven ter- When compared to various (interactive) theorem proving

datatype pattern with nat =
Empty(0) (* empty string matches Empty *)
| Char(1) of char (* "¢" matches Char (c) *)
| {i:nat,j:nat} Plus(i+j+1) of pattern(i) * pattern(j)
(* cs matches Plus(pl, p2) if cs matches either pl or p2 *)
| {i:nat,j:nat} Times(i+j+1) of pattern(i) * pattern(j)
(* cs matches Times(pl, p2) if a prefix of cs matches pl and
the rest matches p2 *)
| {i:nat} Star(i+1) of pattern(i)
(* cs matches Star(p) if cs matches some, possibly 0, copies of p *)

(* ’length’ computes the length of a list *)
fun('a)
length (xs) = let
fun len (], n) = n
| len (x =z xs, n) = len (xs, n+l)
withtype
{i:nat,j:nat} <i> => ’a list(i) * int() -> int(i+j)
in
len (xs, 0)
end
withtype {i:nat} <> => ’a list(i) -> int(i)
(* empty tuple <> is used since ’'length’ is not recursive *)

fun acc p cs k =
case p of
Empty => k (cs)
| Char(c) =>
(case cs of
[=> false
| ¢ = cs =>if (c = ¢) then k (cs’) else false)
| Plus(pl, p2) => (* in this case, k is used for backtracking *)
if acc pl cs k then true else acc p2 cs k
| Times(pl, p2) => acc pl cs (fn cs’ => acc p2 cs’ k)
| Star(p0) =>
if k (cs) then true
else acc pO0 cs (fn cs’ =>
if length(cs’) = length(cs) then false
else acc p cs’ k)
withtype {n:nat} pattern(n) ->
{i:;nat} <n, i> => char list(i) ->
({i:nat | i <= i} char list(i") -> bool) -> bool

(* 'explode’ turns a string into a list of characters *)
fun accept p s =

acc p (explode s) (fn [] => true | _ :: _ => false)
withtype <> => pattern -> string -> bool

Figure 8. An implementation of pattern matching on strings

systems such as NuPrl [2], Coq [4], Isabelle [8] and PVS [9], [2] R. L. Constable et al.Implementing Mathematics with the

our approach to program termination is weaker (in the sense NuPrl Proof Development Systefrentice-Hall, Englewood

that [many] fewer programs can be verified terminating) but Cliffs, New Jersey, 1986.

more automatic and less obtrusive to programming. We have[3] N. Dershowitz. Orderings for term rewriting systen&heo-

essentially designed a mechanism for program termination retical Computer Scien¢d 7(3):279-301, 1982.

verification with a language interface that is to be used dur- [4] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Par-

ing program development cycle. We consider this asthe main ent, C. Paulin-Mohring, and B. Werner. The Coq proof assis-

contribution of the paper. When applied, the designed mech- tant user’s guide. Rapport Techniques 154, INRIA, Rocquen-

anism intends to facilitate program error detection, leading court, France, 1993. Version 5.8.

to the construction of more robust programs. [5] R. Harper. Proof-Directed Debuggingournal of Functional
Programming 9(4):471-477, 1999.

[6] J.Hughes, L. Pareto, and A. Sabry. Proving the correctness of

reactive systems using sized types.Conference Record of

23rd ACM SIGPLAN Symposium on Principles of Program-

ming Languagespages 410-423, 1996.

[7] J.-P. Jouannaud and A. Rubio. The higher-order recursive

path ordering. IrProceedings of 14th IEEE Symposium on

Logic in Computer Sciengpages 402—-411, July 1999.

7 Conclusion and Future Work

We have presented an approach based on dependent types
in DML that allows the programmer to supply metrics for
verifying program termination and proven its correctness.
We have also applied this approach to various examples that

:cnvolvr-.} S'gmf'(.:ant P“?gg?‘mm'”? felatures .SUChhasha ger:jeral [8] P. Lawrencelsabelle: A Generic Theorem Provespringer-
orm of recursion (including mutual recursion), higher-order Verlag LNCS 828, 1994.

fungtions, aIgebrajc data'gypes and polymorphism, support- [9] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
ing its usefulness in practice. o . PVS: Combining specification, proof checking, and model
A program property is often classified as either a safety checking. In R. Alur and T. A. Henzinger, editoRioceed-
property or a liveness property. _Th.at a program never per- ings of the 8th International Conference on Computer-Aided
forms out-of-bounds array subscripting at run-time is a safety Verification, CAV '96 pages 411-414, New Brunswick, NJ
property. It is demonstrated in [17] that dependent_types in JuIy/Augus:[1996. Springer-Verlag LNCS 1102, T
DML can guar:?]ntee tfhftit every v;lell-?f/petd per?ra'm '? DML [10] B. Pientka and F. Pfenning. Termination and Reduction
POSSESSES Such a salety property, efiectively facilitating run- Checking in the Logical Framework. M/orkshop on Au-
time array bound check elimination. It is, however, unclear tomation of Proofs by Mathematical Inductiahune 2000
(a priori) Wh?ther. dependent typgs in DML. can also be use(3411] C. Speirs, Z. Somogyi, and H. Sgndergarrd. Termination
for establishing liveness properties. In this paper, we hav Analysis for Mercury. InProceedings of the 4th Static Anal-
formally addressed the question, demonstrating that depen- ysis Symposiunpages 157171, September 1997
Qent types in DM!‘ can be combined with metrics to estab-[2] W. W. Tait. Intensional Interpretations of Functionals of Fi-
lish program termination, one of the most significant liveness nite Type I. Journal of Symbolic Logic32(2):198—-212, June
properties. o . . 1967, ' ’
.Tefm'”a“on .checklng S also useful for compiler opti- [13] J. D. Ullman and A. V. Gelder. Efficient tests for top-down
mization. For instance, if one decides to change the exe-

- . . termination of logic rules.Journal of the ACM 35(2):345—
cution order of two programs, it may be required to prove 373 1988

that the first program always_ terr_‘ninates. _Also, it Seems fea[14] H. Xi. Dependent Types in Practical ProgramminghD
sible to use metrics for estimating the time complexity of thesis, Carnegie Mellon University, 1998. pp. viii+189.

programs. In lazy function programming, such information Available as
may allow a compiler to decide whether a thunk should be http:/Awww.cs.cmu.edu/"hwxi/DMLithesis.ps .

formed. In future, we expect to explore along these lines of[15] H. Xi. Dependently Typed Data Structures Aroceedings o

res:larr]ch. " h q i i | Workshop on Algorithmic Aspects of Advanced Programming
though we have presented many interesting examples Languagespages 17-33, September 1999.

that cannot .be proven terminating \.Nith structural Order?ngs_,r,#m] H. Xi. Dependent Types for Program Termination Verifica-
we emphasize that structural orderings are often effective i tion, July 2000. Available as
practice for establishing program termination. Therefore, it http’://www.ece.cs.uc.edthwxi/DML/Term _

seems fruitful to study a combination of our approach with 17] H. Xi and F. Pfenning. Eliminating array bound checking
structural orderings that handles simple cases with either aJ— through dependent types. Rroceedings of ACM SIGPLAN
tomatically synthesized or manually provided structural or- Conference on Programming Language Design and Imple-
dgrings and verifies more difficult cases with metrics sup- mentation pages 249—257, Montreal, June 1998.
plied by the programmer. [18] H. Xiand F. Pfenning. Dependent types in practical program-
ming. InProceedings of ACM SIGPLAN Symposium on Prin-
References ciples of Programming Languagesages 214-227, San An-
tonio, January 1999.
[1] A.BenCherifaand P. Lescanne. Termination of rewriting sys- [19] H. Zantema. Termination of term rewriting by semantic la-
tems by polynomial interpretations and its implementation. belling. Fundamenta Informaticae4:89-105, 1995.
SCP 9(2):137-160, 1987.

